4.6 Article

AKT Signaling Downstream of KGF Is Necessary and Sufficient for Blocking Cyclophosphamide Bladder Injury

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 192, Issue 4, Pages 604-612

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ajpath.2022.01.004

Keywords

-

Categories

Funding

  1. NIH [R01 DK095748]

Ask authors/readers for more resources

Keratinocyte growth factor (KGF) activates AKT in bladder urothelium, providing cytoprotection from cyclophosphamide. The study shows that KGF modifies AKT targets, suppresses apoptosis, and stabilizes mTORC1 signaling. AKT signaling is necessary for KGF-driven cytoprotection, and direct AKT activation blocks apoptosis. Thus, AKT may be a therapeutic target for preventing urothelial apoptosis.
Keratinocyte growth factor (KGF) drives phosphorylated (activated) AKT (pAKT) in bladder urothelium, which correlates with cytoprotection from cyclophosphamide. The current study determined whether: i) KGF modifies AKT targets [B-cell lymphoma protein 2-associated agonist of cell death (BAD) and mammalian target of rapamycin complex (mTORC)-1] that could block apoptosis; ii) AKT signaling is required for KGF cytoprotection; iii) direct AKT activation drives cytoprotection; iv) co-administration of KGF and an AKT inhibitor blocks urothelial cytoprotection and AKT and AKT-target activation; and v) an AKT agonist prevents cyclophosphamide-induced urothelial apoptosis. Mice were given KGF and cyclophosphamide (or sham injury), and pBAD (readout of BAD inhibition) or p-p70S6k (pS6, readout of mTORC1 signaling) was assessed. KGF induced pBAD urothelial staining and prevented cyclophosphamide-induced loss of urothelial pS6 staining (likely stabilizing mTORC1 activity). Co-administration of KGF and AKT inhibitor blocked KGF-driven urothelial cytoprotection from cyclophosphamide and prevented pAKT, pBAD, and pS6 urothelial expression. Conversely, systemic AKT agonist blocked cyclophosphamide-induced urothelial apoptosis and induced pAKT, pBAD, and pS6, similar to KGF. Thus, the KGF-AKT signaling axis appeared to phosphorylate (suppress) BAD and prevent cyclophosphamide-induced loss of mTORC1 signaling, both of which likely suppress apoptosis. Additionally, AKT signaling was required for KGF-driven cytoprotection, and direct AKT activation was sufficient for blocking apoptosis. Thus, AKT may be a therapeutic target for blocking urothelial apoptosis from cyclophosphamide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available