4.6 Article

Novel uterine contraction monitoring to enable remote, self-administered nonstress testing

Journal

Publisher

MOSBY-ELSEVIER
DOI: 10.1016/j.ajog.2021.11.018

Keywords

contraction; intrauterine pressure catheter; nonstress test; remote pregnancy monitoring; telemedicine; tocodynamometry; uterine activity

Funding

  1. Nuvo Group Ltd

Ask authors/readers for more resources

This study described and validated a novel algorithm to noninvasively detect uterine contractions via a wireless pregnancy monitor. The positive agreement for the wireless monitor was 84.8% with a false-positive rate of 24.8%. Compared to tocodynamometry, the wireless monitor had a significantly better positive agreement but a higher false-positive rate.
BACKGROUND: The serial fetal monitoring recommended for women with high-risk pregnancies places a substantial burden on the patient, often disproportionately affecting underprivileged and rural populations. A telehealth solution that can empower pregnant women to obtain recommended fetal surveillance from the comfort of their own home has the potential to promote health equity and improve outcomes. We have previously validated a novel, wireless pregnancy monitor that can remotely capture fetal and maternal heart rates. However, such a device must also detect uterine contractions if it is to be used to robustly conduct remote nonstress tests. OBJECTIVE: This study aimed to describe and validate a novel algorithm that uses biopotential and acoustic signals to noninvasively detect uterine contractions via a wireless pregnancy monitor. STUDY DESIGN: A prospective, open-label, 2-center study evaluated simultaneous detection of uterine contractions by the wireless pregnancy monitor and an intrauterine pressure catheter in women carrying singleton pregnancies at >= 32 0/7 weeks' gestation who were in the first stage of labor (ClinicalTrials.gov Identifier: NCT03889405). The study consisted of a training phase and a validation phase. Simultaneous recordings from each device were passively acquired for 30 to 60 minutes. In a subset of the monitoring sessions in the validation phase, tocodynamometry was also deployed. Three maternal-fetal medicine specialists, blinded to the data source, identified and marked contractions in all modalities. The positive agreement and false-positive rates of both the wireless monitor and tocodynamometry were calculated and compared with that of the intrauterine pressure catheter. RESULTS: A total of 118 participants were included, 40 in the training phase and 78 in the validation phase (of which 39 of 78 participants were monitored simultaneously by all 3 devices) at a mean gestational age of 38.6 weeks. In the training phase, the positive agreement for the wireless monitor was 88.4% (1440 of 1692 contractions), with a false-positive rate of 15.3% (260/1700). In the validation phase, using the refined and finalized algorithm, the positive agreement for the wireless pregnancy monitor was 84.8% (2722/3210), with a false-positive rate of 24.8% (897/3619). For the subgroup who were monitored only with the wireless monitor and intrauterine pressure catheter, the positive agreement was 89.0% (1191/1338), with a similar false-positive rate of 25.4% (406/1597). For the subgroup monitored by all 3 devices, the positive agreement for the wireless monitor was significantly better than for tocodynamometry (P<.0001), whereas the false-positive rate was significantly higher (P<.0001). Unlike tocodynamometry, whose positive agreement was significantly reduced in the group with obesity compared with the group with normal weight (P=.024), the positive agreement of the wireless monitor did not vary across the body mass index groups. CONCLUSION: This novel method to noninvasively monitor uterine activity, via a wireless pregnancy monitoring device designed for self-administration at home, was more accurate than the commonly used tocodynamometry and unaffected by body mass index. Together with the previously reported remote fetal heart rate monitoring capabilities, this added ability to detect uterine contractions has created a complete telehealth solution for remote administration of nonstress tests.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available