4.7 Article

Coupled simulation and deep-learning prediction of combustion and heat transfer processes in supercritical CO2 CFB boiler

Journal

ADVANCED POWDER TECHNOLOGY
Volume 33, Issue 1, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apt.2021.11.013

Keywords

Circulating fluidized bed; Coupled simulation; Supercritical CO 2; Deep-learning prediction

Ask authors/readers for more resources

This study investigates the combustion process and heat transfer characteristics of the supercritical CO2 (S-CO2) power cycle in a circulating fluidized bed (CFB) using computational fluid dynamics (CFD) simulation and multiphase particle-in-cell (MP-PIC) method. A novel method using Radial Base Function (RBF) neural network for predicting simulation results is proposed to improve the prediction accuracy. The findings are significant for the design and optimization of S-CO2 CFB boilers.
The supercritical CO2 (S-CO2) power cycle has a wide application prospect in coal-fired power generation field because it's highly effective, compactly structured, and flexible of operation. To observe more accurate heat transfer and coal combustion characteristics in the circulating fluidized bed (CFB) with the distinctive S-CO2 boundary, a 3D computational fluid dynamics (CFD) simulation of the furnace-side combustion process treated by the multiphase particle-in-cell (MP-PIC) method was conducted in a 600 MW S-CO2 CFB boiler coupled with the heat transfer process on working fluid side based on the polynomial fitting calculation model. Furthermore, a novel method to predict simulation results via Radial Base Function (RBF) neural network was proposed to simplify the computational process, enhance the sample data fusion, and improve the prediction accuracy. Results show that staggered hightemperature fluid and high heat flux was a major concern in S-CO2 heating surface arrangement. The temperature rise of wall heaters was less than the conventional steam CFB, and the heat flux of spiral and vertical heat transfer tubes decreased along the tube. The predicted temperature distribution of tubes and cold walls was in a good agreement with the coupling simulation results, whose accuracy can meet the engineering requirements. (c) 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available