4.8 Article

Loading Single-Ni Atoms on Assembled Hollow N-Rich Carbon Plates for Efficient CO2 Electroreduction

Journal

ADVANCED MATERIALS
Volume 34, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202105204

Keywords

CO; (2) reduction; electrocatalysis; hollow carbon; single-atom catalysts

Funding

  1. Ministry of Education of Singapore through the Academic Research Fund (AcRF) [MOE2017-T2-2-003, MOE2019-T2-2-049]

Ask authors/readers for more resources

The rational design of dual-linker zeolitic tetrazolate framework-engaged strategy successfully constructed an Ni-NC(AHP) electrocatalyst with enhanced mesoporosity and more available surface area, promoting mass transport and affording abundant accessible single-Ni sites.
The rational design of catalysts' spatial structure is vitally important to boost catalytic performance through exposing the active sites, enhancing the mass transfer, and confining the reactants. Herein, a dual-linker zeolitic tetrazolate framework-engaged strategy is developed to construct assembled hollow plates (AHP) of N-rich carbon (NC), which is loaded with single-Ni atoms to form a highly efficient electrocatalyst (designated as Ni-NC(AHP)). In the carbonization process, the thermally unstable linker (5-aminotetrazole) serves as the self-sacrificial template and the other linker (2-methylimidazole) mainly serves as the carbon and nitrogen source to form hollow NC matrix. The formed Ni-NC(AHP) catalyst possesses enhanced mesoporosity and more available surface area, thus promoting mass transport and affording abundant accessible single-Ni sites. These features contribute to remarkable performance for electrochemical CO2 reduction with exceptionally high selectivity of nearly 100% towards CO in a wide potential range and dramatically enhanced CO partial current density.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available