4.8 Review

Corrosion of titanium under simulated inflammation conditions: clinical context and in vitro investigations

Journal

ACTA BIOMATERIALIA
Volume 136, Issue -, Pages 72-87

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2021.10.002

Keywords

Titanium; Inflammation; Corrosion; Implants; Reactive oxygen species

Ask authors/readers for more resources

This review article discusses the in vitro corrosion of titanium and alloys under inflammation conditions, emphasizing the role of reactive oxygen species in degrading the passive layer protecting titanium implants. Inflammation contributes to the deterioration of biomedical devices, leading to health issues and implant failure. The review highlights the importance of electrochemical and microstructural aspects in understanding this process.
Titanium and alloys thereof are widely utilized for biomedical applications in the fields of orthopedics and dentistry. The corrosion resistance and perceived biocompatibility of such materials are essentially related to the presence of a thin passive oxide layer on the surface. However, during inflammation phases, the immune system and its leukocytic cells generate highly aggressive molecules, such as hydrogen peroxide and radicals, that can significantly alter the passive film resulting in the degradation of the titanium implants. In combination with mechanical factors, this can lead to the release of metal ions, nanopartides or microscaled debris in the surrounding tissues (which may sustain chronic inflammation), bring about relevant health issues and contribute to implant loss or failure. After briefly presenting the context of inflammation, this review article analyses the state-of-the-art knowledge of the in vitro corrosion of titanium, titanium alloys and coated titanium by reactive oxygen species and by living cells with an emphasis on electrochemical and microstructural aspects. Statement of significance Inflammation involves the production of reactive oxygen species that are known to alter the passive layer protecting titanium implants against the aggressive environment of the human body. Inflammatory processes therefore contribute to the deterioration of biomedical devices. Although review articles on biomaterials for implant applications are regularly published in the literature, none has ever focused specifically on the topic of inflammation. After briefly recalling the clinical context, this review analyses the in vitro studies on titanium corrosion under simulated inflammation conditions from the pioneer works of the 80s and the 90s till the most recent investigations. It reports about the status of this research area for a multidisciplinary readership covering the fields of materials science, corrosion and implantology. (C) 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available