4.8 Article

Nanoconfined Fluids: Uniqueness of Water Compared to Other Liquids

Journal

ACS NANO
Volume 15, Issue 12, Pages 19864-19876

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c07381

Keywords

confinement effects; graphene; simple and anomalous liquids; water hydrogen-bond network; diffusion; hydration pressure; free energy

Funding

  1. Spanish grant [PGC2018099277-B-C22, MCIN/AEI/10.13039/501100011033]
  2. ERDF A way of making Europe
  3. ICREA Foundation

Ask authors/readers for more resources

This study uses molecular dynamics simulations to investigate the behavior of different liquids in nanoconfined environments, revealing that water confined at the subnm scale behaves differently from other fluids in terms of diffusion rate and characteristics of free-energy minima.
Nanoconfinement can drastically change the behavior of liquids, puzzling us with counter-intuitive properties. It is relevant in applications, including decontamination and crystallization control. However, it still lacks a systematic analysis for fluids with different bulk properties. Here we address this gap. We compare, by molecular dynamics simulations, three different liquids in a graphene slit pore: (1) A simple fluid, such as argon, described by a Lennard-Jones potential; (2) an anomalous fluid, such as a liquid metal, modeled with an isotropic core-softened potential; and (3) water, the prototypical anomalous liquid, with directional HBs. We study how the slit-pore width affects the structure, thermodynamics, and dynamics of the fluids. All the fluids show similar oscillating properties by changing the pore size. However, their free-energy minima are quite different in nature: (i) are energy-driven for the simple liquid; (ii) are entropy-driven for the isotropic core-softened potential; and (iii) have a changing nature for water. Indeed, for water, the monolayer minimum is entropy driven, at variance with the simple liquid, while the bilayer minimum is energy driven, at variance with the other anomalous liquid. Also, water has a large increase in diffusion for subnm slit pores, becoming faster than bulk. Instead, the other two fluids have diffusion oscillations much smaller than water, slowing down for decreasing slit-pore width. Our results, clarifying that water confined at the subnm scale behaves differently from other (simple or anomalous) fluids under similar confinement, are possibly relevant in nanopores applications, for example, in water purification from contaminants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available