4.8 Article

Power-Dependent Photoluminescence Efficiency in Manganese-Doped 2D Hybrid Perovskite Nanoplatelets

Journal

ACS NANO
Volume 15, Issue 12, Pages 20527-20538

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c09103

Keywords

perovskite; nanoplatelet; 2D; manganese; doping

Funding

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0019345]
  2. Department of Defense through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program

Ask authors/readers for more resources

Substitutional metal doping is a powerful strategy for manipulating the emission spectra and excited state dynamics of semiconductor nanomaterials. The synthesis of colloidal manganese (Mn2+)-doped organic-inorganic hybrid perovskite nanoplatelets via a ligand-assisted reprecipitation method introduces bright and long-lived midgap Mn2+ atomic states, with dual emission from the band edge and the dopant state. The interaction of mobile band edge excitons with localized dopant sites in 2D semiconductors is analyzed, providing fundamental insight and expanding the toolbox for manipulating light emission in perovskite nanomaterials.
Substitutional metal doping is a powerful strategy for manipulating the emission spectra and excited state dynamics of semiconductor nanomaterials. Here, we demonstrate the synthesis of colloidal manganese (Mn2+)-doped organic-inorganic hybrid perovskite nanoplatelets (chemical formula: L-2[APb(1-x)Mn(x)Br(3)](n-1)Pb1-xMnxBr4; L, butylammonium; A, methylammonium or formamidinium; n (= 1 or 2), number of Pb1-xMnxBr64- octahedral layers in thickness) via a ligand-assisted reprecipitation method. Substitutional doping of manganese for lead introduces bright (approaching 100% efficiency) and long-lived (>500 mu s) midgap Mn2+ atomic states, and the doped nanoplatelets exhibit dual emission from both the band edge and the dopant state. Photoluminescence quantum yields and band-edge-to-Mn intensity ratios exhibit strong excitation power dependence, even at a very low incident intensity (<100 mu W/cm(2)). Surprisingly, we find that the saturation of long-lived Mn-2(+) dopant sites cannot explain our observation. Instead, we propose an alternative mechanism involving the cross-relaxation of long-lived Mn-site excitations by freely diffusing band-edge excitons. We formulate a kinetic model based on this cross-relaxation mechanism that quantitatively reproduces all of the experimental observations and validate the model using time-resolved absorption and emission spectroscopy. Finally, we extract a concentration-normalized microscopic rate constant for band edge-to-dopant excitation transfer that is similar to 10x faster in methylammonium-containing nanoplatelets than in formamidinium-containing nanoplatelets. This work provides fundamental insight into the interaction of mobile band edge excitons with localized dopant sites in 2D semiconductors and expands the toolbox for manipulating light emission in perovskite nanomaterials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available