4.8 Article

Streptavidin Coverage on Biotinylated Surfaces

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 48, Pages 58114-58123

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c16446

Keywords

localized surface plasmon resonance (LSPR); quartz crystal microbalance (QCM); streptavidin (SAv); biotin; supported lipid bilayer (SLB); self assembled monolayer (SAM); surface coverage

Funding

  1. Netherlands Organization for Scientific Research (NWO) [TOP 715.015.001]

Ask authors/readers for more resources

The study demonstrates a method to quantitatively predict the SAv coverage on biotinylated surfaces, validated through measuring SAv coverage on supported lipid bilayers. The method allows for prediction of SAv coverage based on biotin coverage in both low- and high-density regimes.
Biosensors and other biological platform technologies require the functionalization of their surface with receptors to enhance affinity and selectivity. Control over the functionalization density is required to tune the platform's properties. Streptavidin (SAy) monolayers are widely used to immobilize biotinylated proteins, receptors, and DNA. The SAv density on a surface can be varied easily, but the predictability is dependent on the method by which the SAv is immobilized. In this study we show a method to quantitatively predict the SAv coverage on biotinylated surfaces. The method is validated by measuring the SAv coverage on supported lipid bilayers with a range of biotin contents and two different main phase lipids and by using quartz crystal microbalance and localized surface plasmon resonance. We explore a predictive model of the biotin-dependent SAv coverage without any fit parameters. Model and data allow to predict the SAv coverage based on the biotin coverage, in both the low- and high-density regimes. This is of special importance in applications with multivalent binding where control over surface receptor density is required, but a direct measurement is not possible.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available