4.8 Article

A Universal Dopant-Free Polymeric Hole-Transporting Material for Efficient and Stable All-Inorganic and Organic-Inorganic Perovskite Solar Cells

Related references

Note: Only part of the references are listed.
Article Engineering, Environmental

Multifunctional liquid additive strategy for highly efficient and stable CsPbI2Br all-inorganic perovskite solar cells

Shiqiang Fu et al.

Summary: In this study, the use of 2-hydroxyethyl methacrylate (HEMA) as an additive successfully improved the crystallinity and humidity sensitivity issues of CsPbI2Br all-inorganic perovskite, leading to a champion efficiency of 16.13% and maintaining high efficiency under humidity conditions by crosslinking grains and blocking moisture penetration.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

D-A-π-A-D-type Dopant-free Hole Transport Material for Low-Cost, Efficient, and Stable Perovskite Solar Cells

Tianqi Niu et al.

Summary: The development of low-cost and efficient hole transport materials (HTMs) is crucial for commercialization of perovskite solar cells (PSCs). DTB-FL with a D-A-pi-A-D molecular design shows promise in achieving high efficiencies and stability in PSCs, as it features excellent optoelectronic properties and efficient surface passivation effects.

JOULE (2021)

Article Chemistry, Physical

Efficient and Stable Graded CsPbI3-xBrx Perovskite Solar Cells and Submodules by Orthogonal Processable Spray Coating

Jin Hyuck Heo et al.

Summary: In this study, inorganic CsPbI2Br-based perovskite thin films with a well-defined CsPbI3-xBrx composition gradient were fabricated using a scalable and orthogonal processable spray-coating approach. The graded structure broadened the absorption wavelength range, increased carrier lifetime, and improved charge separation and collection efficiency within a device stack. The power conversion efficiency reached 16.81% for a 0.096-cm(2) PSC, and a monolithically integrated perovskite sub-module achieved an efficiency of 13.82% with less than 9% degradation over 1,000 hours of continuous 1-sun light soaking.

JOULE (2021)

Article Chemistry, Physical

Implementing Dopant-Free Hole-Transporting Layers and Metal-Incorporated CsPbI2Br for Stable All-Inorganic Perovskite Solar Cells

Sawanta S. Mali et al.

Summary: A new method utilizing hot-air-assisted perovskite deposition and dopant-free hole-transporting materials has been used to improve the efficiency and stability of CsPbI2Br perovskite solar cells. Metal cation doping and dopant-free hole transporting layers have led to record-high power conversion efficiencies and excellent long-term stability.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

One-Source Strategy Boosting Dopant-Free Hole Transporting Layers for Highly Efficient and Stable CsPbI2Br Perovskite Solar Cells

Xinqi Li et al.

Summary: A one-source strategy using the same polymer donor material is proposed to simultaneously dope CsPbI2Br perovskite films and fabricate the hole transport layer, leading to improved film quality and enhanced device performance.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Applied

Fully-inorganic strontium incorporated CsPbI2Br perovskite solar cells with promoted efficiency and stability

Jyoti V. Patil et al.

Summary: This study successfully fabricated strontium incorporated CsPbI2Br-based inorganic perovskite solar cells, which showed improved surface morphology and performance with Sr2+ incorporation. The champion device with CsPb0.98Sr0.02I2Br composition exhibited a significantly higher power conversion efficiency compared to the bare device, and the CsPb0.98Sr0.02I2Br-based devices maintained over 85% of initial efficiency over 100 hours in ambient conditions.

JOURNAL OF ENERGY CHEMISTRY (2021)

Article Multidisciplinary Sciences

Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells

Jaeki Jeong et al.

Summary: The research introduces a new concept of using formate anion to suppress defects in metal halide perovskite films and enhance film crystallinity, leading to improved efficiency and stability of solar cells.

NATURE (2021)

Article Multidisciplinary Sciences

Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity

Wei Hui et al.

Summary: A new method for synthesizing stable black-phase formamidinium lead iodide (α-FAPbI(3)) was reported, which enables the stable synthesis of α-FAPbI(3) under high temperature and humidity conditions, and maintains high efficiency under light stress.

SCIENCE (2021)

Article Chemistry, Physical

High-Efficiency (>14%) and Air-Stable Carbon-Based, All-Inorganic CsPbI2Br Perovskite Solar Cells through a Top-Seeded Growth Strategy

Weidong Zhu et al.

Summary: The use of top-seeded solution growth technique in preparing CsPbI2Br films enhances their quality and stability, resulting in improved efficiency and stability of carbon-based, all-inorganic perovskite solar cells.

ACS ENERGY LETTERS (2021)

Article Energy & Fuels

Dual Passivation Strategy for High Efficiency Inorganic CsPbI2Br Solar Cells

Dingjian Zhou et al.

Summary: The article demonstrates a strategy to minimize nonradiative recombination loss in CsPbI2Br solar cells through establishing a synergetic passivation from the mutual effect of alkali- and alkylammonium-salt.

SOLAR RRL (2021)

Article Chemistry, Multidisciplinary

Electrical Loss Management by Molecularly Manipulating Dopant-free Poly(3-hexylthiophene) towards 16.93 % CsPbI2Br Solar Cells

Ming-Hua Li et al.

Summary: By manipulating the interaction between the polymer and small molecule, a strategy for managing electrical losses in inorganic cesium lead halide perovskite solar cells was developed, significantly increasing carrier mobility and reducing surface defect density, while also improving stability.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%

Teoman Ozturk et al.

Summary: The study presents a method of tuning CsPbI2Br crystallization by incorporating FeCl2 into the perovskite precursor. The introduction of FeCl2 stabilizes the crystal phase, improves efficiency and stability of the photovoltaic devices.

NANO ENERGY (2021)

Article Materials Science, Multidisciplinary

Fully Air-Processed Dynamic Hot-Air- Assisted M:CsPbI2Br (M: Eu2+, In3+) for Stable Inorganic Perovskite Solar Cells

Sawanta S. Mali et al.

Summary: By developing a new method to prepare all-inorganic perovskite solar cells with excellent thermal stability, the efficiency and stability of the devices have been significantly improved through the doping of metal ions. The optimized cells show a high power conversion efficiency and robustness, maintaining high efficiency even in high temperature environments.

MATTER (2021)

Article Chemistry, Physical

Efficient perovskite solar cells enabled by large dimensional structured hole transporting materials

Tai Wu et al.

Summary: In this study, two novel HTMs (YT4 and YT5) were developed for application in PSCs, with YT5 showing superior photovoltaic performance compared to YT4. The results demonstrate that HTMs with a larger dimensional structure, such as YT5, have great potential for enhancing the efficiency and stability of PSCs.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Multidisciplinary

Controlled n-Doping in Air-Stable CsPbI2Br Perovskite Solar Cells with a Record Efficiency of 16.79%

Yu Han et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

VOC Over 1.4 V for Amorphous Tin-Oxide-Based Dopant-Free CsPbI2Br Perovskite Solar Cells

Zhanglin Guo et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Materials Science, Multidisciplinary

Dopant-free polymeric hole transport materials for efficient CsPbI2Br perovskite cells with a fill factor exceeding 84%

Pang Wang et al.

JOURNAL OF MATERIALS CHEMISTRY C (2020)

Review Chemistry, Multidisciplinary

All-Inorganic CsPbX3 Perovskite Solar Cells: Progress and Prospects

Jingru Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Review Chemistry, Multidisciplinary

Halide Perovskite Photovoltaics: Background, Status, and Future Prospects

Ajay Kumar Jena et al.

CHEMICAL REVIEWS (2019)

Article Chemistry, Multidisciplinary

Dual Interfacial Design for Efficient CsPbI2Br Perovskite Solar Cells with Improved Photostability

Jingjing Tian et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Physical

Pb-Reduced CsPb0.9Zn0.1I2Br Thin Films for Efficient Perovskite Solar Cells

Hongrui Sun et al.

ADVANCED ENERGY MATERIALS (2019)

Article Chemistry, Multidisciplinary

Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film

Jingjing Xue et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Multidisciplinary

Polymeric, Cost-Effective, Dopant-Free Hole Transport Materials for Efficient and Stable Perovskite Solar Cells

Fuguo Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Energy & Fuels

Inorganic CsPbI2Br Perovskite Solar Cells: The Progress and Perspective

Qingsen Zeng et al.

SOLAR RRL (2019)

Article Chemistry, Physical

A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells

Wenxiao Zhang et al.

JOURNAL OF MATERIALS CHEMISTRY A (2019)

Article Chemistry, Multidisciplinary

Interface Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14%

Lei Yan et al.

ADVANCED MATERIALS (2018)

Article Chemistry, Multidisciplinary

Precursor Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with 14.78% Efficiency

Guannan Yin et al.

ADVANCED FUNCTIONAL MATERIALS (2018)

Review Multidisciplinary Sciences

Challenges for commercializing perovskite solar cells

Yaoguang Rong et al.

SCIENCE (2018)

Article Chemistry, Physical

Probing the Intrinsic Thermal and Photochemical Stability of Hybrid and Inorganic Lead Halide Perovskites

Azat F. Akbulatov et al.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2017)

Article Chemistry, Physical

Unveiling the Crystal Formation of Cesium Lead Mixed-Halide Perovskites for Efficient and Stable Solar Cells

Jae Keun Nam et al.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2017)

Article Chemistry, Physical

Strontium-Doped Low-Temperature-Processed CsPbI2Br Perovskite Solar Cells

Cho Fai Jonathan Lau et al.

ACS ENERGY LETTERS (2017)

Article Chemistry, Multidisciplinary

Iodine Migration and its Effect on Hysteresis in Perovskite Solar Cells

Cheng Li et al.

ADVANCED MATERIALS (2016)

Article Chemistry, Multidisciplinary

All-Inorganic Perovskite Solar Cells

Jia Liang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Article Chemistry, Multidisciplinary

A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance

Maojie Zhang et al.

ADVANCED MATERIALS (2015)

Article Energy & Fuels

Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

Arif D. Sheikh et al.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2015)

Article Chemistry, Physical

Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite

Bert Conings et al.

ADVANCED ENERGY MATERIALS (2015)

Article Chemistry, Physical

Inorganic caesium lead iodide perovskite solar cells

Giles E. Eperon et al.

JOURNAL OF MATERIALS CHEMISTRY A (2015)

Article Chemistry, Multidisciplinary

An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide

Jeffrey A. Christians et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Review Chemistry, Multidisciplinary

Spiro compounds for organic optoelectronics

Tobat P. I. Saragi et al.

CHEMICAL REVIEWS (2007)