4.8 Article

Improved Thermal Stability and Enhanced Thermoelectric Properties of p-Type BaCu2Te2 by Doping of Cl

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 14, Issue 4, Pages 5634-5642

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c23212

Keywords

Zintl phase; BaCu2Te2; carrier concentration optimization; grain boundary engineering; thermal stability

Funding

  1. National Key Research and Development Program of China [2018YFA0702100]
  2. National Natural Science Foundation of China [21771123, 52072234, U21A2054]
  3. Open Project of Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices [KJS2023]

Ask authors/readers for more resources

This study investigates the manipulation of carrier concentration in semiconductors through doping using Cl substitution in BaCu2Te2. The substitution leads to a reduction in hole concentration and improves the thermal stability of the samples. Additionally, the introduction of point defects and second phase enhances phonon scattering and reduces thermal conductivity, resulting in improved thermoelectric properties. The findings demonstrate that synergistic improvements in thermal stability and thermoelectric performance can be achieved through chemical bonding strengthening and grain boundary engineering, which can be applied to other fast-ionic conductor thermoelectric materials.
Doping in semiconductors is a widely implemented strategy for manipulation of carrier concentration, which is a critical parameter to regulate the thermoelectric performance. Stoichiometric BaCu2Te2 shows high hole concentration and unstable transport properties owing to the inherent Cu vacancy and dynamic precipitation behavior. In this work, Te has been partially substituted by Cl in BaCu2Te2 to suppress the overhigh hole concentration. Due to the high electronegativity of Cl, strong Cl-Cu bonds can significantly inhibit the Cu migration and the consequent dynamic precipitation. Meanwhile, nanoprecipitate BaCl2 distributes in the grain boundary, acting as ionic blocking layers. Therefore, the thermal stability of the samples can be essentially improved via chemical bonding strengthening and grain boundary engineering. In terms of thermal transport, the introduced point defects and second phase strengthen the short-wavelength and medium-wavelength phonon scattering, leading to further reduced thermal conductivity. Eventually, the repeatable ZT value of BaCu2Te1.98Cl0.02 reached 1.22 at 823 K, which is higher by 19.6% compared with 1.02 of pristine BaCu2Te2. The average ZTs of BaCu(2)Te(2-x)Clx (x = 0, 0.02, 0.04, and 0.06) in the temperature range of 323-823 K are 0.737 for x = 0.02, 0.689 for x = 0.04, and 0.667 for x = 0.06, which are 24.6, 17.2, and 13.4% higher than the average ZT of 0.588 corresponding to the undoped sample, respectively. The study shows that synergetic enhancements of thermal stability and thermoelectric properties can be achieved by strengthening chemical bonding and constructing ionic blocking layers in the grain boundary, which can be applied to other fast-ionic conductor thermoelectric materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available