4.8 Article

Nanocatalysis under Nanoconfinement: A Metal-Free Hybrid Coacervate Nanodroplet as a Catalytic Nanoreactor for Efficient Redox and Photocatalytic Reactions

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 43, Pages 51117-51131

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c17106

Keywords

coacervate nanodroplets; nanocatalysis; nanoconfinement; nanoreactor; photocatalysis; redox catalysis

Funding

  1. IIT Indore
  2. Council of Scientific & Industrial Research, India
  3. Prime Minister Research Fellowship, India

Ask authors/readers for more resources

The utilization of metal-free synthetic protocell as a catalytic nanoreactor for redox and photocatalytic transformations has been successfully demonstrated. The nanoreactors exhibit excellent recyclability and achieve spatiotemporal control over the hydrogenation reaction. Additionally, efficient visible light-induced photoredox conversion and artificial peroxidase-like activity have been achieved inside these catalytic nanodroplets.
Nature utilizes cellular and subcellular compartmentalization to efficiently drive various complex enzymatic transformations via spatiotemporal control. In this context, designing of artificial nanoreactors for efficient catalytic transformations finds tremendous importance in recent times. One key challenge remains the design of multiple catalytic centers within the confined space of a nanoreactor without unwanted agglomeration and accessibility barrier for reactants. Herein, we report a unique blend of nanoscience and chemical catalysis using a metal-free hybrid synthetic protocell as a catalytic nanoreactor for redox and photocatalytic transformations, which are otherwise incompatible in bulk aqueous medium. Hybrid coacervate nanodroplets (NDs) fabricated from 2.5 nm-sized carbon dots (CDs) and poly(diallyldimethyl)ammonium chloride have been utilized toward reductive hydrogenation of nitroarenes in the presence of sodium borohydride (NaBH4). It has been found that the reduction mechanism follows the classical Langmuir-Hinshelwood (LH) model at the surface of embedded CDs inside the NDs via the generation of reactive surface hydroxyl groups. These NDs show excellent recyclability without any compromise on reaction kinetics and conversion yield. Importantly, spatiotemporal control over the hydrogenation reaction has been achieved using two mixed populations of coacervates. Moreover, efficient visible light-induced photoredox conversion of ferricyanide to ferrocyanide and artificial peroxidase-like activity have also been demonstrated inside these catalytic NDs. Our findings indicate that the individual polymer-bound CD inside the NDs acts as the catalytic center for both the redox and photocatalytic reactions. The present study highlights the unprecedented catalytic activity of the metal-free CD-based coacervate NDs and paves the way for next-generation catalytic nanoreactors for a wide range of chemical and enzymatic transformations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available