4.7 Article

Self-Sampling for Neural Point Cloud Consolidation

Journal

ACM TRANSACTIONS ON GRAPHICS
Volume 40, Issue 5, Pages -

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3470645

Keywords

Geometric deep learning; surface reconstruction; point clouds

Ask authors/readers for more resources

The novel neural point cloud consolidation technique learns from global subsets to consolidate point clouds from various shapes, eliminating noise and outliers. By repeatedly self-sampling input point clouds and training a deep neural network, the method effectively learns to consolidate the point set.
We introduce a novel technique for neural point cloud consolidation which learns from only the input point cloud. Unlike other point up-sampling methods which analyze shapes via local patches, in this work, we learn from global subsets. We repeatedly self-sample the input point cloud with global subsets that are used to train a deep neural network. Specifically, we define source and target subsets according to the desired consolidation criteria (e.g., generating sharp points or points in sparse regions). The network learns a mapping from source to target subsets, and implicitly learns to consolidate the point cloud. During inference, the network is fed with random subsets of points from the input, which it displaces to synthesize a consolidated point set. We leverage the inductive bias of neural networks to eliminate noise and outliers, a notoriously difficult problem in point cloud consolidation. The shared weights of the network are optimized over the entire shape, learning non-local statistics and exploiting the recurrence of local-scale geometries. Specifically, the network encodes the distribution of the underlying shape surface within a fixed set of local kernels, which results in the best explanation of the underlying shape surface. We demonstrate the ability to consolidate point sets from a variety of shapes, while eliminating outliers and noise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available