4.6 Article

A Full Evaporation Static Headspace Gas Chromatography Method with Nitrogen Phosphorous Detection for Ultrasensitive Analysis of Semi-volatile Nitrosamines in Pharmaceutical Products

Journal

AAPS JOURNAL
Volume 24, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1208/s12248-021-00669-8

Keywords

Full evaporation headspace sampling; Gas chromatography with nitrogen phosphorous detection; NDMA; Nitrosamine; Nitrosation inhibition

Funding

  1. Merck & Co., Inc., Rahway, NJ, USA

Ask authors/readers for more resources

The recent detection of potent carcinogenic nitrosamine impurities in several human medicines has highlighted the need for increased testing of nitrosamines in pharmaceutical products. In this study, a sensitive and specific analytical method for the detection of a common nitrosamine, N-nitrosodimethylamine (NDMA), in pharmaceutical products has been developed. The method has the potential to serve as a universal method for testing nitrosamines in different drug products.
The recent detection of potent carcinogenic nitrosamine impurities in several human medicines has triggered product recalls and interrupted the supply of critical medications for hundreds of millions of patients, illuminating the need for increased testing of nitrosamines in pharmaceutical products. However, the development of analytical methods for nitrosamine detection is challenging due to high sensitivity requirements, complex matrices, and the large number and variety of samples requiring testing. Herein, we report an analytical method for the analysis of a common nitrosamine, N-nitrosodimethylamine (NDMA), in pharmaceutical products using full evaporation static headspace gas chromatography with nitrogen phosphorous detection (FE-SHSGC-NPD). This method is sensitive, specific, accurate, and precise and has the potential to serve as a universal method for testing all semi-volatile nitrosamines across different drug products. Through elimination of the detrimental headspace-liquid partition, a quantitation limit of 0.25 ppb is achieved for NDMA, a significant improvement upon traditional LC-MS methods. The extraction of nitrosamines directly from solid sample not only simplifies the sample preparation procedure but also enables the method to be used for different products as is or with minor modifications, as demonstrated by the analysis of NDMA in 10+ pharmaceutical products. The in situ nitrosation that is commonly observed in GC methods for nitrosamine analysis was completely inhibited by the addition of a small volume solvent containing pyrogallol, phosphoric acid, and isopropanol. Employing simple procedures and low-cost instrumentation, this method can be implemented in any analytical laboratory for routine nitrosamine analysis, ensuring patient safety and uninterrupted supply of critical medications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available