4.6 Article

Metabolic cost of calcification in bivalve larvae under experimental ocean acidification

Journal

ICES JOURNAL OF MARINE SCIENCE
Volume 74, Issue 4, Pages 941-954

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/icesjms/fsw213

Keywords

bioenergetics; calcium carbonate; dissolution; genetics; global change; ion transport; ocean carbonate chemistry; Pacific oyster; protein synthesis

Funding

  1. National Science Foundation [EF-1220587]
  2. Emerging Frontiers
  3. Direct For Biological Sciences [1220587] Funding Source: National Science Foundation

Ask authors/readers for more resources

Physiological increases in energy expenditure frequently occur in response to environmental stress. Although energy limitation is often invoked as a basis for decreased calcification under ocean acidification, energy-relevant measurements related to this process are scant. In this study we focus on first-shell (prodissoconch I) formation in larvae of the Pacific oyster, Crassostrea gigas. The energy cost of calcification was empirically derived to be <= 1.1 mu J (ng CaCO3)(-1). Regardless of the saturation state of aragonite (2.77 vs. 0.77), larvae utilize the same amount of total energy to complete first-shell formation. Even though there was a 56% reduction of shell mass and an increase in dissolution at aragonite undersaturation, first-shell formation is not energy limited because sufficient endogenous reserves are available to meet metabolic demand. Further studies were undertaken on larvae from genetic crosses of pedigreed lines to test for variance in response to aragonite undersaturation. Larval families show variation in response to ocean acidification, with loss of shell size ranging from no effect to 28%. These differences show that resilience to ocean acidification may exist among genotypes. Combined studies of bioenergetics and genetics are promising approaches for understanding climate change impacts on marine organisms that undergo calcification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available