4.5 Article

Small edifice features in Chryse Planitia, Mars: Assessment of a mud volcano hypothesis

Journal

ICARUS
Volume 268, Issue -, Pages 56-75

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2015.12.032

Keywords

Mars, surface; Geological processes; Volcanism; Spectroscopy; Astrobiology

Funding

  1. Spanish Ministry of Economy and Competitiveness [ESP2014-59789-P]

Ask authors/readers for more resources

Small edifice features that are less than a few kilometers in diameter and up to a few hundred meters in height are widely distributed in Chryse Planitia on Mars. They exhibit a broad range of morphological properties that are here classified as Type 1 (steep-sided cones typically with a summit crater), Type 2 (nearly flat features with single or multiple central/summit craters or cones) and Type 3 (nearly circular features in plan view, characterized by steep sides and a broadly flat summit area). Their origins have not been determined with certainty, but our study utilizing the High Resolution Imaging Science Experiment (HiRISE) images supports the interpretation of mud volcanism, based on the observed morphological characteristics of these small edifices and comparisons with terrestrial analogs. Additionally, hydrated minerals detected on these edifice features in data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), further support the mud volcano hypothesis. Injection features such as clastic mega-pipes and sand blow features may coexist with the mud volcanoes. Alternative mechanisms such as magmatic volcanism are not excluded, but they have less support from our remote sensing observations. Further confirmation or rejection of the mud volcano hypothesis will require in-situ investigation by landers or rovers. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available