4.6 Article

Photosynthetic responses of the marine diatom Thalassiosira pseudonana to CO2-induced seawater acidification

Journal

HYDROBIOLOGIA
Volume 788, Issue 1, Pages 361-369

Publisher

SPRINGER
DOI: 10.1007/s10750-016-3014-1

Keywords

Ocean acidification; Diatom; Thalassiosira pseudonana; Photosynthesis

Funding

  1. National Natural Science Foundation of China [31270452]
  2. Chinese Ministry of Education [213026A]
  3. Special Program for National Key Basic Research of China [2014CB460601]
  4. International S & T cooperation program of China [2014DFE70070]
  5. Natural Science Foundation of Hubei Province [2014CFB607]

Ask authors/readers for more resources

Ocean acidification due to atmospheric CO2 rise is expected to influence marine phytoplankton. Diatoms are responsible for about 40% of the total primary production in the ocean. In order to investigate the physiological response of marine diatom Thalassiosira pseudonana to ocean acidification, we grew the cells under ambient CO2 level (380 A mu atm) versus the elevated CO2 level (800 A mu atm) at a light level of 180 A mu mol m(-2) s(-1) for 30 generations. Our results showed that the elevated CO2 concentration caused a decrease of the effective photochemical efficiency of PSII and increase of the dark respiration in T. pseudonana. The intracellular carbonic anhydrase activity was suppressed and the photosynthetic affinity for CO2 was lowered in the high CO2-grown cells, reflecting a downregulation of the CO2 concentrating mechanism (CCM). PSI activity was enhanced to support an increase in ATP synthesis by cyclic electron transfer as required for transport of inorganic carbon and regulation of intracellular pH. The energetic benefit from the downregulation of CCM to growth as reported in other diatom species was not observed here in T. pseudonana.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available