4.5 Article

UMD-Predictor: A High-Throughput Sequencing Compliant System for Pathogenicity Prediction of any Human cDNA Substitution

Journal

HUMAN MUTATION
Volume 37, Issue 5, Pages 439-446

Publisher

WILEY-HINDAWI
DOI: 10.1002/humu.22965

Keywords

pathogenicity prediction; mutation; bioinformatics; NGS; substitution; synonymous; nonsynonymous; nonsense

Funding

  1. European Union [305444]
  2. RD-CONNECT [200754]
  3. GEN2PHEN
  4. FHUA*MIDEX project MARCHE - Investissement d'avenir French government program [ANR-11-IDEX-001-02]

Ask authors/readers for more resources

Whole-exome sequencing (WES) is increasingly applied to research and clinical diagnosis of human diseases. It typically results in large amounts of genetic variations. Depending on the mode of inheritance, only one or two correspond to pathogenic mutations responsible for the disease and present in affected individuals. Therefore, it is crucial to filter out nonpathogenic variants and limit downstream analysis to a handful of candidate mutations. We have developed a new computational combinatorial system UMD-Predictor () to efficiently annotate cDNA substitutions of all human transcripts for their potential pathogenicity. It combines biochemical properties, impact on splicing signals, localization in protein domains, variation frequency in the global population, and conservation through the BLOSUM62 global substitution matrix and a protein-specific conservation among 100 species. We compared its accuracy with the seven most used and reliable prediction tools, using the largest reference variation datasets including more than 140,000 annotated variations. This system consistently demonstrated a better accuracy, specificity, Matthews correlation coefficient, diagnostic odds ratio, speed, and provided the shortest list of candidate mutations for WES. Webservices allow its implementation in any bioinformatics pipeline for next-generation sequencing analysis. It could benefit to a wide range of users and applications varying from gene discovery to clinical diagnosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available