4.0 Article

Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes

Journal

HIGH ENERGY CHEMISTRY
Volume 50, Issue 5, Pages 395-399

Publisher

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0018143916050064

Keywords

colloidal quantum dots; absorption and luminescence spectra; luminescence quantum yield; luminescence lifetimes; blinking; indium phosphide

Funding

  1. Russian Science Foundation [14-13-01426]
  2. Russian Science Foundation [14-13-01426] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

Indium phosphide colloidal quantum dots with a zinc sulfide shell, an average core diameter of 3 nm, a luminescence peak position of 600 nm, and a luminescence quantum yield up to 50% have been synthesized. By analyzing the stationary absorption and luminescence spectra in terms of the Kennard-Stepanov relationship, the values of homogeneous width and inhomogeneous broadening have been obtained, which determine the resulting width of the spectra: the corresponding full widths at half maximum (FWHM) were 31, 63, and 70 nm. From the value of inhomogeneous broadening and the sizing curve of indium phosphide, polydispersity of the synthesized particles has been estimated as 11%. Analysis of the luminescence decay kinetics has revealed three reproducible peaks with maxima near 4.35, 35 (main) and 200 ns in the lifetime distribution. It has been found that although repeated washing of the synthesized particles with methanol can decrease the quantum yield, the lifetime distribution observed remains constant, which in the context of the blinking effect indicates a very short luminescence decay time of the particles in the OFF-state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available