4.8 Article

Metallothionein-1G Facilitates Sorafenib Resistance Through Inhibition of Ferroptosis

Journal

HEPATOLOGY
Volume 64, Issue 2, Pages 488-500

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1002/hep.28574

Keywords

-

Funding

  1. National Institutes of Health [R01CA160417, R01GM115366]
  2. National Natural Science Foundation of China [31171229, U1132005, 81502445]
  3. Science of Guangzhou Key Project [201508020258, 201400000003/4]
  4. National Natural Science Foundation of Guangdong [2016A030308]
  5. American Cancer Society [RSG-16-014-01-CDD]
  6. [P30CA047904]

Ask authors/readers for more resources

Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide and currently has the fastest rising incidence of all cancers. Sorafenib was originally identified as an inhibitor of multiple oncogenic kinases and remains the only approved systemic therapy for advanced HCC. However, acquired resistance to sorafenib has been found in HCC patients, which results in poor prognosis. Here, we show that metallothionein (MT)-1G is a critical regulator and promising therapeutic target of sorafenib resistance in human HCC cells. The expression of MT-1G messenger RNA and protein is remarkably induced by sorafenib but not other clinically relevant kinase inhibitors (e.g., erlotinib, gefitinib, tivantinib, vemurafenib, selumetinib, imatinib, masitinib, and ponatinib). Activation of the transcription factor nuclear factor erythroid 2-related factor 2, but not p53 and hypoxia-inducible factor 1-alpha, is essential for induction of MT-1G expression following sorafenib treatment. Importantly, genetic and pharmacological inhibition of MT-1G enhances the anticancer activity of sorafenib in vitro and in tumor xenograft models. The molecular mechanisms underlying the action of MT-1G in sorafenib resistance involve the inhibition of ferroptosis, a novel form of regulated cell death. Knockdown of MT-1G by RNA interference increases glutathione depletion and lipid peroxidation, which contributes to sorafenib-induced ferroptosis. Conclusion: These findings demonstrate a novel molecular mechanism of sorafenib resistance and suggest that MT-1G is a new regulator of ferroptosis in HCC cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available