4.5 Article

Improvement of capacitive performance of polyaniline based hybrid supercapacitor

Journal

HELIYON
Volume 7, Issue 7, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.heliyon.2021.e07407

Keywords

Polyaniline; Composite; Hybrid supercapacitor; Capacitance; Energy density; Power density

Funding

  1. SUST research center [2020-2021, AS/2020/1/19]

Ask authors/readers for more resources

This study focused on synthesizing polyaniline composites and using them as electrode materials in the fabrication of hybrid supercapacitors. The electrochemical performance of the supercapacitors was evaluated based on capacitive properties, and Ni-PANI composite showed the highest capacitance and energy density among various composites tested. The results suggest that Ni-PANI composite has potential as a cathode material for hybrid supercapacitors.
This study focuses on synthesis of polyaniline composites and application as electrode material in the fabrication of hybrid supercapacitors. Hybrid supercapacitors were fabricated using aluminum foil as current collector, and conductive Polyaniline (PANI) composites as electrode materials. Cobalt oxide (Co2O3), ammonium peroxydisulfate (APS) were used along with PANI in the preparation of electrodes of the supercapacitor. Polyaniline and its various composites were used in the cathode and activated carbon in the anode (positive electrodes) of the asymmetric hybrid supercapacitor. Electrochemical performance of the supercapacitors has been evaluated on the basis of capacitive properties (i.e. capacitance, energy density and power density). Area of the supercapacitor, applied voltage for charging and composition of cathode materials have been optimized in this study. The optimum area of the supercapacitor was found 30 cm(2) at optimum voltage 5 V. The result showed that supercapacitor fabricated using polyaniline (PANI) as cathode material with Al foil as current collector provided highest capacitance of 249 F/g, Energy density of 31 Wh/kg and Power density of 18 W/kg. Among various PANI composites (Ni-PANI, Cu-PANI, CNF-PANI) synthesized in this study, Ni-PANI composite showed highest capacitance of 336 F/g, energy density of 42 Wh/kg, and power density of 31 W/kg. The result indicates that NiPANI composite has high potential as cathode materials for the hybrid supercapacitor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available