4.8 Article

A phosphorus integrated strategy for supercapacitor: 2D black phosphorus-doped and phosphorus-doped materials

Journal

MATERIALS TODAY CHEMISTRY
Volume 21, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mtchem.2021.100480

Keywords

2D black phosphorus; Phosphorus doped materials; Symmetric supercapacitor; Asymmetric supercapacitor

Funding

  1. Centre of Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, India

Ask authors/readers for more resources

This review discusses the potential of phosphorus as an advanced material for commercial realization of advanced supercapacitors, highlighting its excellent physical and electrochemical properties. Phosphorus-based electrodes are widely studied and applied due to their good electrical conductivity and abundance in nature.
In the design and development of energy storage devices, two main factors are considered first high electrochemical performances and second low-cost materials. Phosphorus owns excellent properties such as high carrier mobility, tunable bandgap, anisotropic electronic properties, hydrophilicity, biocompatibility, good electrochemical activity, and high surface area. The interlayer distance of black phosphorus (BP) (0.55 nm) is higher than that of graphene which makes facile ion transportation for supercapacitor application. The phosphorus-based electrode obtained with top-down approaches such as exfoliation and bottom-up approach such as pulsed laser deposition. The BP has been investigated due to its small electronegativity of P which is beneficial to improve the electrical conductivity of the electrode and its abundance nature makes it a desirable candidate for the fabrication of low-cost device. Hence, this review covers the new BP material as the advanced materials for the commercial realization of advanced supercapacitors. This is the first review on phosphorus integrated supercapacitor devices. This review will give a brief idea about BP to researchers in search of outstanding supercapacitor configurations with different electrodes and electrolytes. (c) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available