4.5 Article

Eucalyptus tree influence on spatial and temporal dynamics of fine-root growth in an integrated crop-livestock-forestry system in southeastern Brazil

Journal

RHIZOSPHERE
Volume 19, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.rhisph.2021.100415

Keywords

Integrated farming systems; Alley cropping; Eucalyptus interrows; Minirhizotron; Root system

Funding

  1. Sao Paulo Research Foundation - FAPESP [2014/17927-2]
  2. Brazilian National Council for Scientific and Technological Development-CNPq [141701/2014-5]
  3. FAPESP [2018/09845-7, 2017/11332-5]
  4. Brazilian Agricultural Research Corporation (Embrapa) - Southeast Livestock
  5. University of Sao Paulo-Center of Nuclear Energy in Agriculture (Nutrient Cycling and Isotopic Ecology Laboratories)
  6. Federal Rural University of Rio de Janeiro (Genesis and Soil Classification Laboratory)

Ask authors/readers for more resources

Integrated farming systems are promising for improving land-use efficiency and sustainable agriculture. The introduction of Eucalyptus trees impaired root growth, with palisade grass pasture being more adaptable than corn in the studied system.
Integrated farming systems are promising strategies towards land-use efficiency and sustainable agriculture. The integrated crop-livestock-forestry (ICLF) system stablish complex interactions were synergies or competition depend on the arrangements throughout time and space. Fine root (<= 2 mm) growth dynamics of crops, pasture and trees remains unclear when these species are integrated. We aimed to assess root growth dynamics after Eucalyptus urograndis introduction into an integrated crop-livestock (ICL) system. Previous ICL area was used as a reference. We assessed ICLF 1.9, 4.3 and 7.5 m distances from tree rows, starting the study when trees had three years of age. Eucalyptus rows were spaced 15 m apart and integrated to annual crops and pasture. We evaluated the root growth under two different successional periods: (i) corn cultivation interspaced with palisade grass (Urochloa brizantha); and (ii) a pasture, when palisade grass was grazed. We tracked fine rootlength using the minirhizotron technique, capturing 3200 images scanning up to 70 cm soil depth. Data of photosynthetically active radiation (PAR) transmission, soil bulk density, rainfall and air temperature were used as complementary information to support the discussion. Our results showed that Eucalyptus trees impaired root growth of annual crops cultivated in the interrow position, regardless of distance from the row. From 31 to 80 days after corn germination, root length production in ICLF was reduced by 120-179 cm m(-2).d(-1) along the tree interrow space. For the pasture period, total produced root length density reduced 6% at 1.9 m but increased 25% at 4.3 and 7.5 m, when compared to ICL. Shade of Eucalyptus trees at ICLF 1.9 m position, with PAR transmission mainly below 60%, sharply impaired root growth. Eucalyptus roots represented 12% from total root length produced in ICLF system, and 38% of these roots had positive ectomycorrhizal status. In conclusion, under Eucalyptus trees higher than 20 m, pasture of palisade grass is more adaptable than corn when considering the root growth dynamics of our studied ICLF arrangement. Based on our findings, corn intercropped with palisade grass should not be introduced in future management of the ICLF system, unless part of the trees is chopped to reduce light competition. However, implemented pasture of palisade grass showed belowground synergies with Eucalyptus, increasing root growth in intermediary interrow positions and emerging new fungal symbiosis, which could be playing important functions in soil, as soil carbon storage and nutrient cycling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available