4.6 Article

Time-dependent unbounded Hamiltonian simulation with vector norm scaling

Journal

QUANTUM
Volume 5, Issue -, Pages -

Publisher

VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF
DOI: 10.22331/q-2021-05-26-459

Keywords

-

Funding

  1. Department of Energy [DE-SC0017867, DE-AC02-05CH11231, FWP-NQISCCAWL]
  2. National Science Foundation under the QLCI program [OMA-2016245]

Ask authors/readers for more resources

This study demonstrates that, under suitable assumptions, using Trotter type methods, the computational cost in quantum simulation may not increase at all as the norm of the Hamiltonian increases when measuring the error in terms of the vector norm. This result outperforms previous error bounds in the quantum simulation literature and clarifies the importance of commutator scalings in time-dependent Hamiltonian simulations.
The accuracy of quantum dynamics simulation is usually measured by the error of the unitary evolution operator in the operator norm, which in turn depends on certain norm of the Hamiltonian. For unbounded operators, after suitable discretization, the norm of the Hamiltonian can be very large, which significantly increases the simulation cost. However, the operator norm measures the worst-case error of the quantum simulation, while practical simulation concerns the error with respect to a given initial vector at hand. We demonstrate that under suitable assumptions of the Hamiltonian and the initial vector, if the error is measured in terms of the vector norm, the computational cost may not increase at all as the norm of the Hamiltonian increases using Trotter type methods. In this sense, our result outperforms all previous error bounds in the quantum simulation literature. Our result extends that of [Jahnke, Lubich, BIT Numer. Math. 2000] to the time-dependent setting. We also clarify the existence and the importance of commutator scalings of Trotter and generalized Trotter methods for time-dependent Hamiltonian simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available