4.7 Article

Cooperation among phosphate-solubilizing bacteria, humic acids and arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake

Publisher

SPRINGER
DOI: 10.1186/s40538-021-00230-x

Keywords

Pseudomonas; Bacillus amyloliquefaciens; Humic substances; Plant growth-promoting microorganisms; Maize; Compost; Arbuscular mycorrhizal fungi; Biological fertility

Funding

  1. European Community [312117]

Ask authors/readers for more resources

This study shows that inoculation of beneficial soil microorganisms can enhance maize growth and nutrient uptake, alter soil microbiome composition, and improve crop productivity and health.
Background Increasing the presence of beneficial soil microorganisms is a promising sustainable alternative to support conventional and organic fertilization and may help to improve crop health and productivity. If the application of single bioeffectors has shown satisfactory results, further improvements may arise by combining multiple beneficial soil microorganisms with natural bioactive molecules. Methods In the present work, we investigated in a pot experiment under greenhouse conditions whether inoculation of two phosphate-solubilizing bacteria, Pseudomonas spp. (B2) and Bacillus amyloliquefaciens (B3), alone or in combination with a humic acids (HA) extracted from green compost and/or a commercial inoculum (M) of arbuscular mycorrhizal fungi (AMF), may affect maize growth and soil microbial community. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) fingerprinting analysis were performed to detect changes in the microbial community composition. Results Plant growth, N and P uptake, and mycorrhizal root colonization were found to be larger in all inoculated treatments than in the uninoculated control. The greatest P uptake was found when B. amyloliquefaciens was applied in combination with both HA and arbuscular mycorrhizal fungi (B3HAM), and when Pseudomonas was combined with HA (B2HA). The PLFA-based community profile revealed that inoculation changed the microbial community composition. Gram+/Gram- bacteria, AMF/saprotrophic fungi and bacteria/fungi ratios increased in all inoculated treatments. The greatest values for the AMF PLFA marker (C16:1 omega 5) and AMF/saprotrophic fungi ratio were found for the B3HAM treatment. Permutation test based on DGGE data confirmed a similar trend, with most significant variations in both bacterial and fungal community structures induced by inoculation of B2 or B3 in combination with HA and M, especially in B3HAM. Conclusions The two community-based datasets indicated changes in the soil microbiome of maize induced by inoculation of B2 or B3 alone or when combined with humic acids and mycorrhizal inoculum, leading to positive effects on plant growth and improved nutrient uptake. Our study implies that appropriate and innovative agricultural management, enhancing the potential contribution of beneficial soil microorganisms as AMF, may result in an improved nutrient use efficiency in plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available