4.5 Article

Task- and Intensity-Dependent Modulation of Arm-Trunk Neural Interactions in the Corticospinal Pathway in Humans

Journal

ENEURO
Volume 8, Issue 5, Pages -

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/ENEURO.0111-21.2021

Keywords

arm-trunk interaction; corticospinal pathway; motor evoked potential; transcranial magnetic stimulation

Categories

Ask authors/readers for more resources

This study aimed to investigate neural interactions between arm and trunk or arm and leg muscles during different arm muscle contractions. The results showed that trunk extensor corticospinal excitability depends on the task and the intensity of arm contraction, while this is not true for trunk flexor and leg muscles.
Most human movements require coordinated activation of multiple muscles. Although many studies reported associations between arm, leg, and trunk muscles during functional tasks, their neural interaction mechanisms still remain unclear. Therefore, the aim of our study was to investigate arm-trunk or arm-leg neural interactions in the corticospinal tract during different arm muscle contractions. Specifically, we examined corticospinal excitability of the erector spinae (ES; trunk extensor), rectus abdominis (RA; trunk flexor), and tibialis anterior (TA; leg) muscles while participants exerted: (1) wrist flexion and (2) wrist extension isometric contraction at various contraction intensity levels ranging from rest to 50% of maximal voluntary contraction (MVC) effort. Corticospinal excitability was assessed using motor evoked potentials (MEPs) elicited through motor cortex transcranial magnetic stimulation (TMS). Results showed that ES MEPs were facilitated even at low contractions (>5% MVC) during wrist flexion and extension, while stronger contractions (>25% MVC) were required to facilitate RA MEPs. The extent of facilitation of ES MEPs depended on contraction intensity of wrist extension, but not flexion. Moreover, TA MEPs were facilitated at low contractions (>5% MVC) during wrist flexion and extension, but contraction intensity dependence was only shown during stronger wrist extension contractions (>25% MVC). In conclusion, trunk extensor corticospinal excitability seems to depend on the task and the intensity of arm contraction, while this is not true for trunk flexor and leg muscles. Our study therefore demonstrated task- and intensity-dependent neural interactions of arm-trunk connections, which may underlie anatomic and/or functional substrates of these muscle pairs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available