4.7 Article

A comparative study of CO catalytic oxidation on the single vacancy and di-vacancy graphene supported single-atom iridium catalysts: A DFT analysis

Journal

SURFACES AND INTERFACES
Volume 25, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.surfin.2021.101293

Keywords

CO catalytic oxidation; Single vacancy (SV) graphene; Di-vacancy (DV) graphene; Single atom catalysis; DFT; Iridium

Ask authors/readers for more resources

In this study, the mechanism of CO oxidation over Ir embedded on single vacancy and di-vacancy graphene was investigated using DFT. The results indicate that both Ir-GN(SV) and Ir-GN(DV) have high catalytic activity and selectivity towards CO oxidation. These findings suggest that the proposed catalysts could serve as promising SAC for CO oxidation at low temperatures, potentially paving the way for the development of enhanced-performance Ir-based heterogeneous catalysts.
Engineering of high-performance catalysts is of great importance for reducing the greenhouse gas emission by the electrocatalytic oxidation of CO. Single-atom-catalysts (SACs) have gained substantial attention thanks to their superior catalytic activity for CO oxidation, and graphene has been considered as one most promising supporting material owing to its peculiar physicochemical properties. In this work, the mechanism of CO oxidation over iridium (Ir) embedded on both single vacancy graphene (Ir-GN(SV)) and di-vacancy graphene (Ir-GN(DV)) has been investigated with the aid of density functional theory (DFT). The structural properties of Ir-GN(SV) and Ir-GN(DV) were analyzed by Bader charge analysis and electron density difference map. The calculated adsorption energy values of CO and O-2 molecules on both the Ir-GNSV and Ir-GN(DV) have validated that both molecules can be molecularly adsorbed on the surface of each catalyst at room temperature. The results put forth that the reaction mechanism of CO + O-2 -> OOCO -> CO2 + O* prefers to Langmuir Hinshelwood (LH) mechanism. The activation energy for the transition-state for Ir-GNSV has been calculated to be 0.31 eV, whereas the first transition state (TS1) and the second transition state (TS2) of Ir-GN(DV) have been determined as 0.30 eV and 0.26 eV, respectively. Moreover, the results have confirmed that Ir-GN(SV) and Ir-GN(DV) surfaces have high catalytic activity and selectivity towards CO oxidation. On the basis of these findings, the proposed Ir-GN(SV) and Ir-GN(DV) catalysts are considered to be promising SAC for CO oxidation at low-temperature. It can be speculated that this work paves the way for the engineering of boosted-performance Ir-based heterogeneous catalysts by providing deeper mechanistic insights.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available