4.7 Article

Computational frame work of Cattaneo-Christov heat flux effects on Engine Oil based Williamson hybrid nanofluids: A thermal case study

Journal

CASE STUDIES IN THERMAL ENGINEERING
Volume 26, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.csite.2021.101179

Keywords

Single phase model; Williamson-hybrid nanofluid; Porosity material; Cattaneo-Christov heat flux; Keller box method

Categories

Ask authors/readers for more resources

The study investigates the solid hybrid nanofluid flow and thermal transport characteristics over a slippery, nonlinear, uniform stretching surface, focusing on the influence of nanosolid particle shapes, permeability material, viscous dissipative flow, Cattaneo-Christov heat flux and radiate flux. The computational method employed is Keller-box's to identify self-similar resolution for transformed principles into ordinary-differential equations, leading to important results in the comparison of thermal transmission levels.
In this effort, solid hybrid nanofluid flowing and thermal transport characteristics over a slippery, nonlinear, uniform stretching surface are proposed. The influence of nanosolid particle shapes, permeability material, viscous dissipative flow, Cattaneo-Christov heat flux and radiate flux are studied. The predominant flow equations are systemized in form of partial-differential equations (PDEs). Keller-box's computational method is the employed method to identify the self-similar resolution for transformed principles into the ordinary-differential equations (ODEs) by appropriate transmutations. Williamson hybrid nanofluidcontaining of dual varied types of nano-particles, named Copper (Cu) and Zirconium dioxide (ZrO2) in the rich viscid; based fluid of kind EO-Engine Oil is utilized in this research. The remarkable consequence of this analysis is reached by comparison of thermal transmission level of such type of fluid (ZrO2-Cu/EO), which has increasingly more gains to traditional nanofluids (Cu-EO). The lamina-figured elements effect the utmost major thermal conductivity in the boundary-layer, whilst the lowermost thermal conductivity is detected in sphere geometric nanoparticle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available