4.7 Article

Improving the Photocatalytic Hydrogen Generation Using Nonaggregated Zinc Phthalocyanines

Journal

ACS APPLIED ENERGY MATERIALS
Volume 4, Issue 9, Pages 10222-10233

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.1c02102

Keywords

artificial photosynthesis; DFT; dye sensitization; NIR dyes; photocatalytic hydrogen evolution; phthalocyanine

Funding

  1. Turkish Academy of Sciences

Ask authors/readers for more resources

Compared to traditional solar cells, dye-sensitized photocatalytic systems are attractive artificial photosynthesis mechanisms due to their low cost and easy fabrication. The presence of a cocatalyst greatly enhances the hydrogen generation efficiency of ZnPc-1/TiO2 and ZnPc-2/TiO2 photocatalysts. Density functional theory (DFT) studies reveal the structural differences between ZnPc-1 and ZnPc-2, shedding light on their distinct photocatalytic activities.
In comparison to traditional solar cells, the dye-sensitized photocatalytic system is one of the most appealing artificial photosynthesis mechanisms due to its low cost and straightforward fabrication. Herein, the photoelectrochemical and photocatalytic hydrogen evolution reactions of Zn-based phthalocyanine (Pc) derivatives, abbreviated as ZnPc-1 and ZnPc-2, were primarily studied in the presence of TEOA sacrificial electron donor. To this aim, the PC activities of ZnPc-1/TiO2 and ZnPc-2/TiO2 photocatalysts were investigated in the absence and presence of a cocatalyst. For the first hour, the amount of hydrogen generated by ZnPc derivatives (ZnPc-1/TiO2 and ZnPc-2/TiO2) was determined to be 1.221 and 0.864 mmol g(-1) h(-1), respectively. Additionally, the solar-to-hydrogen conversion efficiencies of ZnPc-1/TiO2 and ZnPc-2/TiO2 were ascertained to be 3.15% and 2.22%, respectively. Interestingly, STH efficiencies of photocatalysts were increased about 4-fold in the presence of a cocatalyst. Consequently, to elucidate the structural properties of ZnPc-1 and ZnPc-2, density functional theory (DFT) and time-dependent DFT studies were also conducted, and it was discovered that noncovalent interactions and steric hindrance effects on ZnPc-2 are tightly related to the experimentally determined PC activity differences between ZnPc-1 and ZnPc-2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available