4.2 Article

A coupled discrete element-finite difference model of selective laser sintering

Journal

GRANULAR MATTER
Volume 18, Issue 2, Pages -

Publisher

SPRINGER
DOI: 10.1007/s10035-016-0626-0

Keywords

Additive manufacturing; Selective laser sintering; Selective laser melting; Computational mechanics; Discrete elements

Funding

  1. Siemens Energy, Inc.

Ask authors/readers for more resources

Selective laser sintering (SLS) is an additive manufacturing technology whereby one can 3D print parts out of a powdered material. However, in order to produce defect free parts of sufficient strength, the process parameters (laser power, scan speed, powder layer thickness, etc.) must be carefully optimized depending on material, part geometry, and desired final part characteristics. Computational methods are very useful in the quick optimization of such parameters without the need to run numerous costly experiments. Most published models of this process involve continuum-based techniques, which require the homogenization of the powder bed and thus do not capture the stochastic nature of this process. Thus, the aim of this research is to produce a reduced order computational model of the SLS process which combines the essential physics with fast computation times. In this work the authors propose a coupled discrete element-finite difference model of this process. The powder particles are modeled as discrete, thermally and mechanically interacting spheres. The solid, underneath substrate is modeled via the finite difference method. The model is validated against experimental results in the literature and three-dimensional simulations are presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available