4.8 Review

The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment

Journal

BIOACTIVE MATERIALS
Volume 6, Issue 7, Pages 1973-1987

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.bioactmat.2020.12.010

Keywords

Nanoparticles; Tumor microenvironment; Cancer immunotherapy; Hypoxia

Funding

  1. National Key Research and Development program of China [2018YFC1106100, 2018YFC1106101]
  2. National Natural Science Foundation of China [81930024, 81770974]
  3. Science and Technology Commission of Shanghai [17DZ2260100]

Ask authors/readers for more resources

The development and metastasis of tumors are closely linked to the tumor microenvironment (TME). Nanoparticles, with their unique physical properties and design, show potential in efficiently penetrating TME and delivering therapeutic agents to specific components. However, the heterogeneity of tumors and individuals may limit the effectiveness of nanoparticle delivery systems in all types of tumors, calling for further understanding of TME changes at different stages of tumor development for the design of more personalized nanoplatforms.
The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available