4.3 Review

The accuracy of clinical 3D printing in reconstructive surgery: literature review and in vivo validation study

Journal

GLAND SURGERY
Volume 10, Issue 7, Pages 2293-2303

Publisher

AME PUBL CO
DOI: 10.21037/gs-21-264

Keywords

Accuracy; validation; 3D printing; in vivo; plastic surgery

Categories

Ask authors/readers for more resources

The benefits of 3D printing in improving surgical efficiency and clinical outcomes have been demonstrated by studies, but there is a scarcity of research on the accuracy of 3D printing techniques. Variability was found in the average errors of different 3D printing techniques, with most errors being introduced during the image segmentation stage.
A growing number of studies demonstrate the benefits of 3D printing in improving surgical efficiency and subsequently clinical outcomes. However, the number of studies evaluating the accuracy of 3D printing techniques remains scarce. All publications appraising the accuracy of 3D printing between 1950 and 2018 were reviewed using well-established databases, including PubMed, Medline, Web of Science and Embase. An in vivo validation study of our 3D printing technique was undertaken using unprocessed chicken radius bones (Gallus gallus domesticus). Calculating its maximum length, we compared the measurements from computed tomography (CT) scans (CT group), image segmentation (SEG group) and 3D-printed (3DP) models (3DP group). Twenty-eight comparison studies in 19 papers have been identified. Published mean error of CT-based 3D printing techniques were 0.46 mm (1.06%) in stereolithography, 1.05 mm (1.78%) in binder jet technology, 0.72 mm (0.82%) in PolyJet technique, 0.20 mm (0.95%) in fused filament fabrication (FFF) and 0.72 mm (1.25%) in selective laser sintering (SLS). In the current in vivo validation study, mean errors were 0.34 mm (0.86%) in CT group, 1.02 mm (2.51%) in SEG group and 1.16 mm (2.84%) in 3DP group. Our Peninsula 3D printing technique using a FFF 3D printer thus produced accuracy similar to the published studies (1.16 mm, 2.84%). There was a statistically significant difference (P<10-4) between the CT group and the latter SEG and 3DP groups indicating that most of the error is introduced during image segmentation stage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available