4.4 Review

The Hunt for Pevatrons: The Case of Supernova Remnants

Journal

UNIVERSE
Volume 7, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/universe7090324

Keywords

pevatrons; Galactic cosmic rays; gamma rays

Ask authors/readers for more resources

The search for Galactic pevatrons is a key science project in the very-high-energy domain to identify sources that can accelerate particles up to the PeV range. The detection of gamma rays in this energy range is crucial in pinpointing astrophysical sources that can energize particles, including possible pevatrons.
The search for Galactic pevatrons is now a well-identified key science project of all instruments operating in the very-high-energy domain. Indeed, in this energy range, the detection of gamma rays clearly indicates that efficient particle acceleration is taking place, and observations can thus help identify which astrophysical sources can energize particles up to the similar to PeV range, thus being pevatrons. In the search for the origin of Galactic cosmic rays (CRs), the PeV range is an important milestone, since the sources of Galactic CRs are expected to accelerate PeV particles. This is how the central scientific goal that is 'solving the mystery of the origin of CRs' has often been distorted into 'finding (a) pevatron(s)'. Since supernova remnants (SNRs) are often cited as the most likely candidates for the origin of CRs, 'finding (a) pevatron(s)' has often become 'confirming that SNRs are pevatrons'. Pleasingly, the first detection(s) of pevatron(s) were not associated to SNRs. Moreover, all clearly detected SNRs have yet revealed to not be pevatrons, and the detection from VHE gamma rays from regions unassociated with SNRs, are reminding us that other astrophysical sites might well be pevatrons. This short review aims at highlighting a few important results on the search for Galactic pevatrons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available