4.6 Article

Preparation and characterization of a novel functionalized agricultural waste-based adsorbent for Cu2+ removal: Evaluation of adsorption performance using response surface methodology

Journal

SUSTAINABLE CHEMISTRY AND PHARMACY
Volume 22, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scp.2021.100468

Keywords

Agricultural waste; Cu2+ adsorption; Modified adsorbent; Optimization

Ask authors/readers for more resources

This study aimed to improve adsorption capability by modifying flaxseed waste with iron, resulting in a chemically controlled adsorption mechanism with electrostatic interactions playing an important role. The modified FW shows potential in environmental remediation applications for heavy metal removal.
In this study, it was aimed to the improvement of adsorption capability with a novel modification method based on increasing surface activity of flaxseed waste (FW), an agricultural waste product, and the investigation of its usability as an effective adsorbent for Cu2+ removal. The modification method involves functionalization of FW with iron by adding FeCl3 to medium in presence of N, N-Dimethyl-formamide, poly (N-vinyl-pyrrolidone), and hexamethylenetetramine. The effect of parameters was investigated by conventional univariate analysis. In addition, Response Surface Methodology (RSM) based on multivariate analysis was used to improve the performance of Cu2+ adsorption onto iron-modified flaxseed waste (M - FW). Cu2+ removal efficiency was achieved as 91.46% +/- 2.34 (N = 2) at an equilibrium time of only 15 min under determined optimum conditions as Co: 75 ppm, pH: 4.7, and m: 0.23 g. RSM was successfully applied for the prediction of adsorption. Adsorption nature was as a single-layer adsorption with a maximum adsorption capacity (Q(max)) of 7.64 mg/g. The adsorption mechanism, determined to be chemically controlled, an exothermic and non-spontaneous process. Furthermore, pH-dependent adsorption showed that electrostatic interactions between M - FW and Cu2+ ions play an important role in adsorption mechanism. The results of characterization studies showed that a large surface area was provided with increased porosity of structure and desired changes occurred in target functional structures with modification. Moreover, modification and reusability of M - FW were evaluated in terms of overall sustainability and waste management. The results indicated that M - FW has potential for usability to remove heavy metals like Cu2+ in environmental remediation applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available