4.6 Article

Large-Scale Green Synthesis of Porphyrins

Journal

ACS OMEGA
Volume 6, Issue 35, Pages 22922-22936

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.1c03534

Keywords

-

Funding

  1. Department of Atomic Energy, India
  2. SERB (Science and Engineering Research Board), India [EMR/2016/005484]
  3. CSIR India

Ask authors/readers for more resources

The new two-step methodology for porphyrin synthesis is cost-effective and easy to scale up, with reproducible yields ranging from 10-40%.
A new methodology for porphyrin synthesis has been developed. This is a simple two-step protocol. The first step involves the condensation of pyrrole and aldehyde in an H2O-MeOH mixture using HCl. The obtained precipitate from the first step was dissolved in reagent-grade dimethylformamide (DMF) and refluxed for 1.5 h, followed by stirring overnight in the air at room temperature. Subsequent purification through column chromatography or crystallization resulted in the formation of pure porphyrins. Advantageously, this methodology does not need any expensive chemicals such as 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), chloranil, and so forth as an oxidizing agent. This reaction also does not require a large volume of dry chlorinated solvents. Contrary to the reported methodologies, which are mostly ineffective in the gram-scale production of porphyrins, the present method perfectly caters to the need for gram-scale production of porphyrins. In essence, the current methodology does not represent the synthesis having the highest yield in the literature. However, it represents the easiest and cheapest synthesis of porphyrin on a large scale to obtain a reproducible yield of 10-40% with high purity. In a few of the examples, even column chromatography is not necessary. A simple crystallization technique will be sufficient to generate the desired porphyrins in good yields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available