4.7 Article

Effect of Nutrient Solution Flow Rate on Hydroponic Plant Growth and Root Morphology

Journal

PLANTS-BASEL
Volume 10, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/plants10091840

Keywords

hydroponics; nutrient uptake; plant growth; root morphology; LED; flow rate; eustress; mechanical stimulation; thigmomorphogenesis; dryland agriculture

Categories

Funding

  1. Japan Science and Technology Agency (JST)/Japan International Cooperation Agency (JICA) [JPMJSA1405]

Ask authors/readers for more resources

The suitable flow rate promoted root growth and nutrient absorption, leading to overall better plant growth, while excess flow rate caused compact roots, inhibited growth, and ultimately decreased hydroponic crop quality.
Crop production under hydroponic environments has many advantages, yet the effects of solution flow rate on plant growth remain unclear. We conducted a hydroponic cultivation study using different flow rates under light-emitting diode lighting to investigate plant growth, nutrient uptake, and root morphology under different flow rates. Swiss chard plants were grown hydroponically under four nutrient solution flow rates (2 L/min, 4 L/min, 6 L/min, and 8 L/min). After 21 days, harvested plants were analyzed for root and shoot fresh weight, root and shoot dry weight, root morphology, and root cellulose and hemicellulose content. We found that suitable flow rates, acting as a eustress, gave the roots appropriate mechanical stimulation to promote root growth, absorb more nutrients, and increase overall plant growth. Conversely, excess flow rates acted as a distress that caused the roots to become compact and inhibited root surface area and root growth. Excess flow rate thereby resulted in a lower root surface area that translated to reduced nutrient ion absorption and poorer plant growth compared with plans cultured under a suitable flow rate. Our results indicate that regulating flow rate can regulate plant thigmomorphogenesis and nutrient uptake, ultimately affecting hydroponic crop quality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available