4.7 Article

Single Wavelengths of LED Light Supplement Promote the Biosynthesis of Major Cyclic Monoterpenes in Japanese Mint

Journal

PLANTS-BASEL
Volume 10, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/plants10071420

Keywords

mint; monoterpenes; solid phase microextraction (SPME); hydroponics; LED supplement

Categories

Funding

  1. Lotte Research Promotion Grant
  2. Leading Initiative for Excellent Young Researchers of MEXT, Japan

Ask authors/readers for more resources

This study found that different wavelengths of LED light can promote the biosynthesis of cyclic monoterpenes in mint leaves, with blue light supplementation showing the most significant effects.
Environmental light conditions influence the biosynthesis of monoterpenes in the mint plant. Cyclic terpenes, such as menthol, menthone, pulegone, and menthofuran, are major odor components synthesized in mint leaves. However, it is unclear how light for cultivation affects the contents of these compounds. Artificial lighting using light-emitting diodes (LEDs) for plant cultivation has the advantage of preferential wavelength control. Here, we monitored monoterpene contents in hydroponically cultivated Japanese mint leaves under blue, red, or far-red wavelengths of LED light supplements. Volatile cyclic monoterpenes, pulegone, menthone, menthol, and menthofuran were quantified using the head-space solid phase microextraction method. As a result, all light wavelengths promoted the biosynthesis of the compounds. Remarkably, two weeks of blue-light supplement increased all compounds: pulegone (362% increase compared to the control), menthofuran (285%), menthone (223%), and menthol (389%). Red light slightly promoted pulegone (256%), menthofuran (178%), and menthol (197%). Interestingly, the accumulation of menthone (229%) or menthofuran (339%) was observed with far-red light treatment. The quantification of glandular trichomes density revealed that no increase under light supplement was confirmed. Blue light treatment even suppressed the glandular trichome formation. No promotion of photosynthesis was observed by pulse-amplitude-modulation (PAM) fluorometry. The present result indicates that light supplements directly promoted the biosynthetic pathways of cyclic monoterpenes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available