4.6 Article

Inhibition of LpxC Increases the Activity of Iron Chelators and Gallium Nitrate in Multidrug-Resistant Acinetobacter baumannii

Journal

ANTIBIOTICS-BASEL
Volume 10, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/antibiotics10050609

Keywords

LpxC inhibitors; iron chelators; gallium; antibiotic resistance; synergy

Funding

  1. Instituto de Salud Carlos III (ISCIII) [MPY 380/18]
  2. Rio Hortega Program from the Instituto de Salud Carlos III

Ask authors/readers for more resources

Novel synergy between LpxC inhibitors and iron chelators or gallium nitrate has been identified against A. baumannii strains, leading to a significant reduction in bacterial growth.
Infections caused by multidrug-resistant Acinetobacter baumannii would benefit from the development of novel treatment approaches. Compounds that interfere with bacterial iron metabolism, such as iron chelators and gallium nitrate, have previously been shown to have antimicrobial activity against A. baumannii. In this study, we characterize the effect of LpxC inhibitors on the antimicrobial activity of previously characterized iron chelators, 2,2 '-bipyridyl (BIP) and deferiprone (DFP), and gallium nitrate (Ga(NO3)(3)) against A. baumannii reference strains and multidrug-resistant clinical isolates. The LpxC inhibitor LpxC-2 was synergistic with BIP for 30% of strains tested (FICI values: 0.38-1.02), whereas inhibition with LpxC-4 was synergistic with BIP for 60% of strains tested (FICI values: 0.09-0.75). In time-kill assays, combinations of BIP with both LpxC inhibitors demonstrated synergistic activity, with a more than 3 log(10) reduction in bacterial counts compared to BIP alone. LpxC-2 was synergistic with Ga(NO3)(3) for 50% of strains tested (FICI values: 0.27-1.0), whereas LpxC-4 was synergistic with Ga(NO3)(3) for all strains tested (FICI values: 0.08-<= 0.50). In time-kill assays, combinations of Ga(NO3)(3) with LpxC-2 and LpxC-4 decreased the growth of both strains compared to each compound separately; however, only the combination with LpxC-4 met the defined criteria for synergy. These results identify a novel synergy between two antimicrobial classes against A. baumannii strains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available