4.8 Article

Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis

Journal

GLOBAL CHANGE BIOLOGY
Volume 23, Issue 5, Pages 1917-1925

Publisher

WILEY
DOI: 10.1111/gcb.13455

Keywords

cost and benefit; grain yield; greenhouse gas; knowledge-based N management; reactive N losses

Funding

  1. National Science & Technology Pillar Program [2013BAD11B00]
  2. National Science Foundation of China [41425005]
  3. Australia-China Joint Research Centre - Australian Government Department of Industry and Science
  4. Australia-China Joint Research Centre - Chinese Ministry of Science and Technology
  5. Chinese Academy of Sciences

Ask authors/readers for more resources

Knowledge-based nitrogen (N) management, which is designed for a better synchronization of crop N demand with N supply, is critical for global food security and environmental sustainability. Yet, a comprehensive assessment on how these N management practices affect food production, greenhouse gas emission (GHG), and N pollution in China is lacking. We compiled the results of 376 studies (1166 observations) to evaluate the overall effects of seven knowledge-based N management practices on crop productivity, nitrous oxide (N2O) emission, and major reactive N (Nr) losses (ammonia, NH3; N leaching and runoff), for staple grain (rice, wheat, and corn) production in China. These practices included the application of controlled-release N fertilizer, nitrification inhibitor (NI) and urease inhibitor (UI), higher splitting frequency of fertilizer N application, lower basal N fertilizer (BF) proportion, deep placement of N fertilizer, and optimal N rate based on soil N test. Our results showed that, compared to traditional N management, these knowledge-based N practices significantly increased grain yields by 1.3-10.0%, which is attributed to the higher aboveground N uptake (5.1-12.1%) and N use efficiency in grain (8.0-48.2%). Moreover, these N management practices overall reduced GHG emission and Nr losses, by 5.4-39.8% for N2O emission, 30.7-61.5% for NH3 emission (except for the NI application), 13.6-37.3% for N leaching, and 15.5-45.0% for N runoff. The use of NI increased NH3 emission by 27.5% (9.0-56.0%), which deserves extra-attention. The cost and benefit analysis indicated that the yield profit of these N management practices exceeded the corresponding input cost, which resulted in a significant increase of the net economic benefit by 2.9-12.6%. These results suggest that knowledge-based N management practice can be considered an effective way to ensure food security and improve environmental sustainability, while increasing economic return.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available