4.8 Article

Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in theCommunity Land Model

Journal

GLOBAL CHANGE BIOLOGY
Volume 22, Issue 3, Pages 1299-1314

Publisher

WILEY
DOI: 10.1111/gcb.13131

Keywords

carbon cost; Community Land Model; Fixation and Uptake of Nitrogen; mycorrhizal fungi; nitrogen uptake; net primary production

Funding

  1. US Department of Energy Office of Biological and Environmental Research Terrestrial Ecosystem Science Program
  2. US National Science Foundation Ecosystem Science Program
  3. Direct For Social, Behav & Economic Scie [1437591] Funding Source: National Science Foundation
  4. Division Of Behavioral and Cognitive Sci [1437591] Funding Source: National Science Foundation

Ask authors/readers for more resources

Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots,N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4Pg C yr(-1) to acquire 1.0 Pg Nyr(-1), and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for similar to 66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2, and warming temperatures) may impact the land C sink.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available