4.8 Article

Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands

Journal

GLOBAL CHANGE BIOLOGY
Volume 23, Issue 3, Pages 1109-1127

Publisher

WILEY
DOI: 10.1111/gcb.13403

Keywords

boreal; carbon; collapse-scar bog; peatland; permafrost; permafrost thaw

Funding

  1. U.S. Geological Survey Climate and Land Use Research and Development Program

Ask authors/readers for more resources

Permafrost peatlands store one-third of the total carbon (C) in the atmosphere and are increasingly vulnerable to thaw as high-latitude temperatures warm. Large uncertainties remain about C dynamics following permafrost thaw in boreal peatlands. We used a chronosequence approach to measure C stocks in forested permafrost plateaus (forest) and thawed permafrost bogs, ranging in thaw age from young (< 10 years) to old (> 100 years) from two interior Alaska chronosequences. Permafrost originally aggraded simultaneously with peat accumulation (syngenetic permafrost) at both sites. We found that upon thaw, C loss of the forest peat C is equivalent to similar to 30% of the initial forest C stock and is directly proportional to the prethaw C stocks. Our model results indicate that permafrost thaw turned these peatlands into net C sources to the atmosphere for a decade following thaw, after which post-thaw bog peat accumulation returned sites to net C sinks. It can take multiple centuries to millennia for a site to recover its prethaw C stocks; the amount of time needed for them to regain their prethaw C stocks is governed by the amount of C that accumulated prior to thaw. Consequently, these findings show that older peatlands will take longer to recover prethaw C stocks, whereas younger peatlands will exceed prethaw stocks in a matter of centuries. We conclude that the loss of sporadic and discontinuous permafrost by 2100 could result in a loss of up to 24 Pg of deep C from permafrost peatlands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available