4.6 Article

Unicellular versus Filamentous: The Glacial Alga Ancylonema alaskana comb. et stat. nov. and Its Ecophysiological Relatedness to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta)

Journal

MICROORGANISMS
Volume 9, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/microorganisms9051103

Keywords

cryoflora; supraglacial communities; photosynthesis; lipidome; fatty acids; polyphenols; Mesotaeniaceae; phylogeny

Categories

Funding

  1. Austrian Science Fund (FWF)

Ask authors/readers for more resources

Dark pigmented algae on melting polar and alpine ice surfaces significantly reduce surface albedo of glaciers, accelerating melt rates. Physiological comparison of the filamentous Ancylonema nordenskioeldii and unicellular Mesotaenium berggrenii var. alaskanum revealed high tolerance to solar irradiation and similar lipid profiles, indicating physiological similarity but genetic distinctness.
Melting polar and alpine ice surfaces frequently exhibit blooms of dark pigmented algae. These microbial extremophiles significantly reduce the surface albedo of glaciers, thus accelerating melt rates. However, the ecology, physiology and taxonomy of cryoflora are not yet fully understood. Here, a Swiss and an Austrian glacier dominated either by filamentous Ancylonema nordenskioeldii or unicellular Mesotaenium berggrenii var. alaskanum, were sampled. Molecular analysis showed that both species are closely related, sharing identical chloroplast morphologies (parietal-lobed for Ancylonema vs. axial plate-like for Mesotaenium sensu stricto), thus the unicellular species was renamed Ancylonema alaskana. Moreover, an ecophysiological comparison of the two species was performed: pulse-amplitude modulated (PAM) fluorometry confirmed that they have a high tolerance to elevated solar irradiation, the physiological light preferences reflected the conditions in the original habitat; nonetheless, A. nordenskioeldii was adapted to higher irradiances while the photosystems of A. alaskana were able to use efficiently low irradiances. Additionally, the main vacuolar polyphenol, which effectively shields the photosystems, was identical in both species. Also, about half of the cellular fatty acids were polyunsaturated, and the lipidome profiles dominated by triacylglycerols were very similar. The results indicate that A. alaskana is physiologically very similar and closely related but genetically distinct to A. nordenskioeldii.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available