4.7 Article

Inhibition of Phosphatidylinositol 3-Kinase by Pictilisib Blocks Influenza Virus Propagation in Cells and in Lungs of Infected Mice

Journal

BIOMOLECULES
Volume 11, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/biom11060808

Keywords

phosphatidylinositol-3 kinase; signaling; influenza virus; Pictilisib

Funding

  1. MedK Muenster
  2. Deutsche Forschungsgemeinschaft (DFG) [SFB 1009/B02, Lu477/23-1]
  3. IZKF Jena [ACSP 02]
  4. German Research Foundation
  5. Thueringer Universitaets-und Landesbibliothek Jena [433052568]

Ask authors/readers for more resources

The PI3K inhibitor Pictilisib has been identified as a potent inhibitor of IV propagation, showing reduced viral titers and inflammatory response in the lungs, making it a promising candidate for anti-IV therapies. Repurposing previously approved substances is a cost-effective and efficient way for the development of novel antiviral strategies.
Influenza virus (IV) infections are considered to cause severe diseases of the respiratory tract. Beyond mild symptoms, the infection can lead to respiratory distress syndrome and multiple organ failure. Occurrence of resistant seasonal and pandemic strains against the currently licensed antiviral medications points to the urgent need for new and amply available anti-influenza drugs. Interestingly, the virus-supportive function of the cellular phosphatidylinositol 3-kinase (PI3K) suggests that this signaling module may be a potential target for antiviral intervention. In the sense of repurposing existing drugs for new indications, we used Pictilisib, a known PI3K inhibitor to investigate its effect on IV infection, in mono-cell-culture studies as well as in a human chip model. Our results indicate that Pictilisib is a potent inhibitor of IV propagation already at early stages of infection. In a murine model of IV pneumonia, the in vitro key findings were verified, showing reduced viral titers as well as inflammatory response in the lung after delivery of Pictilisib. Our data identified Pictilisib as a promising drug candidate for anti-IV therapies that warrant further studying. These results further led to the conclusion that the repurposing of previously approved substances represents a cost-effective and efficient way for development of novel antiviral strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available