4.7 Article

Histone Methyltransferase SETD1A Induces Epithelial-Mesenchymal Transition to Promote Invasion and Metastasis Through Epigenetic Reprogramming of Snail in Gastric Cancer

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fcell.2021.657888

Keywords

SETD1A; gastric cancer; metastasis; snail; epigenetic reprogram

Funding

  1. National Natural Science Foundation of China [81970455]
  2. Jiangsu Talent Youth Medical Program [QNRC2016245]
  3. Suzhou Science and Technology Development Project [SYS2018082]

Ask authors/readers for more resources

SETD1A promotes migration and invasion of gastric cancer cells, while also inhibiting metastasis in vivo. Through epigenetic reprogramming of snail, SETD1A induces epithelial-mesenchymal transition and metastasis.
Aberrant epigenetic modification induces oncogene expression and promotes cancer development. The histone lysine methyltransferase SETD1A, which specifically methylates histone 3 lysine 4 (H3K4), is involved in tumor growth and metastasis, and its ectopic expression has been detected in aggressive malignancies. Our previous study reported that SETD1A promotes gastric cancer (GC) proliferation and tumorigenesis. However, the function and molecular mechanisms of SETD1A in GC metastasis remain to be elucidated. In this study, we found that overexpression of SETD1A promoted GC migration and invasion, whereas knockdown of SETD1A suppressed GC migration and invasion in vitro. Moreover, knockdown of SETD1A suppressed GC epithelial-mesenchymal transition (EMT) by increasing the expression of epithelial marker E-cadherin and decreasing the expression of mesenchymal markers, including N-cadherin, Fibronectin, Vimentin, and alpha-smooth muscle actin (alpha-SMA). Mechanistically, knockdown of SETD1A reduced the EMT key transcriptional factor snail expression. SETD1A was recruited to the promoter of snail, where SETD1A could methylate H3K4. However, knockdown of SETD1A decreased the methylation of H3K4 on the snail promoter. Furthermore, SETD1A could be a coactivator of snail to induce EMT gene expression. Rescue of snail restored SETD1A knockdown-induced GC migration and invasion inhibition. In addition, knockdown of SETD1A suppressed GC metastasis in vivo. In summary, our data revealed that SETD1A mediated the EMT process and induced metastasis through epigenetic reprogramming of snail.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available