4.7 Article

Prediction of Plant Nutrition State of Rice under Water-Saving Cultivation and Panicle Fertilization Application Decision Making

Journal

AGRONOMY-BASEL
Volume 11, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy11081626

Keywords

rice; water-saving cultivation; UAV remote sensing; vegetation index; nitrogen fertilizer

Funding

  1. Council of Agriculture
  2. Ministry of Science and Technology, Taiwan [108AS-13.2.4-FD-Z1, 109AS-11.2.4-FD-Z1]

Ask authors/readers for more resources

The rice farming industry in Asia is influenced by global urbanization, rapid industrialization, and climate change. Research has shown that plant nitrogen and chlorophyll content in rice are significantly influenced by the interaction between water and fertilizer. Using UAV images to analyze vegetation indices can help predict the nutrition state of rice, and differences in field cumulative nitrogen can be used to diagnose nitrogen topdressing needs during the panicle initiation stage.
Rice is a staple food crop in Asia. The rice farming industry has been influenced by global urbanization, rapid industrialization, and climate change. A combination of precise agricultural and smart water management systems to investigate the nutrition state in rice is important. Results indicated that plant nitrogen and chlorophyll content at the maximum tillering stage were significantly influenced by the interaction between water and fertilizer. The normalized difference vegetation index (NDVI) and normalized difference red edge (NDRE), obtained from the multispectral images captured by a UAV, exhibited the highest positive correlations (0.83 and 0.82) with plant nitrogen content at the maximum tillering stage. The leave-one-out cross-validation method was used for validation, and a final plant nitrogen content prediction model was obtained. A regression function constructed using a nitrogen nutrition index and the difference in field cumulative nitrogen had favorable variation explanatory power, and its adjusted coefficient of determination was 0.91. We provided a flow chart showing how the nutrition state of rice can be predicted with the vegetation indices obtained from UAV image analysis. Differences in field cumulative nitrogen can be further used to diagnose the demand of nitrogen topdressing during the panicle initiation stage. Thus, farmers can be provided with precise panicle fertilization strategies for rice fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available