4.7 Article

Branched-Chain Amino Acid Supplementation Alters the Abundance of Mechanistic Target of Rapamycin and Insulin Signaling Proteins in Subcutaneous Adipose Explants from Lactating Holstein Cows

Journal

ANIMALS
Volume 11, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/ani11092714

Keywords

leucine; adipose tissue; insulin signaling

Funding

  1. Evonik Operations GmbH\Nutrition & Care, Hanau, Germany

Ask authors/readers for more resources

Branched-chain amino acids can activate mTOR and insulin signaling in subcutaneous adipose tissue, leading to increased amino acid transport into tissues and reduced BCAA metabolism. Increasing BCAA supply may help improve the function of subcutaneous adipose tissue.
Simple Summary Branched-chain amino acids (BCAAs) are import regulators of mechanistic target of rapamycin (mTOR). In humans and rodents, increased circulating BCAA levels are positively associated with changes in protein abundance of insulin and amino acid (AA) signaling pathways in organs such as skeletal muscle and adipose. Unlike aspects of fatty acid metabolism (e.g., lipolysis, lipogenesis), it is unknown if BCAA directly affect subcutaneous adipose tissue (SAT) AA metabolism and insulin signaling. We propose that BCAA availability within SAT could enhance aspects of AA and insulin function by promoting increases in the abundance of key proteins. The objective of this study was to investigate changes in protein abundance of mTOR and insulin signaling pathway components along with amino acid (AA) transporters in bovine s.c. adipose (SAT) explants in response to increased supply of Leu, Ile, or Val. Explants of SAT from four lactating Holstein cows were incubated with high-glucose serum-free DMEM, to which the 10 essential AAs were added to create the following treatments: ideal mix of essential AA (IPAA; Lys:Met 2.9:1; Lys:Thr 1.8:1; Lys:His 2.38:1; Lys:Val 1.23:1; Lys:Ile 1.45:1; Lys:Leu 0.85:1; Lys:Arg 2.08:1) or IPAA supplemented with Ile, Val, or Leu to achieve a Lys:Ile of 1.29:1 (incIle), Lys:Val 1.12:1 (incVal), or Lys:Leu (incLeu) 0.78:1 for 4 h. Compared with IPAA, incLeu or incIle led to greater activation of protein kinase B (AKT; p-AKT/total AKT) and mTOR (p-mTOR/total mTOR). Total EAA in media averaged 7.8 +/- 0.06 mmol/L across treatments. Incubation with incLeu, incIle, or incVal led to greater protein abundance of solute carrier family 38 member 1 (SLC38A1), a Gln transporter, and the BCAA catabolism enzyme branched-chain alpha-keto acid dehydrogenase kinase (BCKDK) compared with IPAA. Activation of eukaryotic elongation factor 2 (eEF2; p-eEF2/total eEF2) was also greater in response to incLeu, incIle, or incVal. Furthermore, compared with incLeu or incIle, incVal supplementation led to greater abundance of SLC38A1 and BCKDK. BCKDK is a rate-limiting enzyme regulating BCAA catabolism via inactivation and phosphorylation of the BCKD complex. Overall, data suggested that enhanced individual supplementation of BCAA activates mTOR and insulin signaling in SAT. Increased AA transport into tissue and lower BCAA catabolism could be part of the mechanism driving these responses. The potential practical applications for enhancing post-ruminal supply of BCAA via feeding in rumen-protected form support in vivo studies to ascertain the role of these AAs on adipose tissue biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available