4.7 Article

Untargeted Metabolomic Characteristics of Skeletal Muscle Dysfunction in Rabbits Induced by a High Fat Diet

Journal

ANIMALS
Volume 11, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/ani11061722

Keywords

rabbit; high-fat diet; skeletal muscle; metabolomics; biomarkers

Funding

  1. Earmarked Fund for China Agriculture Research System [CARS-43-A-2]
  2. Thirteenth Five-Year Plan for Technology Support Project in Sichuan Province [2016NYZ0046]

Ask authors/readers for more resources

Untargeted metabolomic analysis of rabbit skeletal muscle revealed that a high-fat diet altered the metabolism of phospholipids, carnitine, amino acids, and steroids. Specifically, phospholipids, LCACs, histidine, carnosine, and tetrahydrocorticosteroids were identified as potential biomarkers for type 2 diabetes and metabolic syndrome, indicating their importance in related diseases.
Simple Summary In the present study, we performed an untargeted metabolomic analysis of skeletal muscle of rabbits and found that the skeletal muscle of rabbits fed a high-fat diet is rich in many metabolites, most of which are associated with type 2 diabetes and metabolic syndrome. In this paper, the mechanism of action of these metabolites in skeletal muscle and the metabolic pathways that interfere with the normal operation mechanism of the body are described and presented in the form of charts. Finally, we found that skeletal muscle-rich phospholipids, long-chain carnitine, histidine, carnosine, and tetrahydrocortisone may be potential markers for type 2 diabetes and metabolic syndrome, and may serve as potential therapeutic targets for related diseases in the future. Type 2 diabetes and metabolic syndrome caused by a high fat diet (HFD) have become public health problems worldwide. These diseases are characterized by the oxidation of skeletal muscle mitochondria and disruption of insulin resistance, but the mechanisms are not well understood. Therefore, this study aims to reveal how high-fat diet causes skeletal muscle metabolic disorders. In total, 16 weaned rabbits were randomly divided into two groups, one group was fed a standard normal diet (SND) and the other group was fed a high fat diet (HFD) for 5 weeks. At the end of the five-week experiment, skeletal muscle tissue samples were taken from each rabbit. Untargeted metabolomic analysis was performed using ultra-performance liquid chromatography combined with mass spectrometry (UHPLC-MS/MS). The results showed that high fat diet significantly altered the expression levels of phospholipids, LCACs, histidine, carnosine, and tetrahydrocorticosterone in skeletal muscle. Principal component analysis (PCA) and least squares discriminant analysis (PLS-DA) showed that, compared with the SND group, skeletal muscle metabolism in HFD group was significantly up-regulated. Among 43 skeletal muscle metabolites in the HFD group, phospholipids, LCACs, histidine, carnosine, and tetrahydrocorticosteroids were identified as biomarkers of skeletal muscle metabolic diseases, and may become potential physiological targets of related diseases in the future. Untargeted metabonomics analysis showed that high-fat diet altered the metabolism of phospholipids, carnitine, amino acids and steroids in skeletal muscle of rabbits. Notably, phospholipids, LCACs, histidine, carnopeptide, and tetrahydrocorticosteroids block the oxidative capacity of mitochondria and disrupt the oxidative capacity of glucose and the fatty acid-glucose cycle in rabbit skeletal muscle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available