4.6 Article

A Three-Phase Resonant Boost Inverter Fed Brushless DC Motor Drive for Electric Vehicles

Journal

ELECTRONICS
Volume 10, Issue 15, Pages -

Publisher

MDPI
DOI: 10.3390/electronics10151799

Keywords

BLDC motor; boost inverter; electric drive; resonant inverter; power conversion

Funding

  1. Electrical Engineering Thai-French Research Center (EE-TFRC)
  2. University of Pitesti [KMUTNB-FF-65-20]
  3. King Mongkut's University of Technology North Bangkok [KMUTNB-FF-65-20]

Ask authors/readers for more resources

The article introduces a three-phase resonant boost inverter (TPRBI) to drive a permanent magnet brushless DC (PMBLDC) motor, minimizing torque ripples by injecting sinusoidal current and eliminating an extra power conversion stage, thus improving system reliability and efficiency.
The present article proposes a three-phase resonant boost inverter (TPRBI) to feed a permanent magnet brushless DC (PMBLDC) motor at the requested torque with low ripples due to the sinusoidal current injected into the PMBLDC motor. PMBLDC motors have the highest torque-to-weight ratio compared to other motors and are the best choice for electric vehicle applications. Conventionally, these motors are driven by voltage source inverters (VSI) with trapezoidal current injection, introducing unwanted torque ripples. Moreover, due to the buck operation of VSI, an extra power conversion stage is required to elevate the battery voltage level to desired DC-link voltage. This extra stage increases the number of components used, complexity of control and decreases the efficiency and reliability of the overall system. TPRBI injects sinusoidal current in the PMBLDC motor in the proposed method, thus minimizing the torque ripples. The proposed inverter also has an inherent voltage boost characteristic, thus eliminating the extra power conversion stage. The single-stage conversion from DC to boosted sinusoidal AC enhances the system reliability and efficiency and minimizes the cost and weight of the system. A MATLAB/Simulink model is presented along with simulation results and mathematical validation. A comparative evaluation of the proposed system with the conventional VSI-fed PMBLDC motor is presented in terms of induced torque ripples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available