4.7 Article

Enzyme-induced carbonate mineral precipitation for fugitive dust control

Journal

GEOTECHNIQUE
Volume 66, Issue 7, Pages 546-555

Publisher

ICE PUBLISHING
DOI: 10.1680/jgeot.15.P.168

Keywords

erosion; ground improvement; soil stabilisation

Funding

  1. Geomechanics and Geotechnical Systems, Geoenvironmental Engineering and Geohazards Mitigation programme of the United States National Science Foundation (NSF) Division of Civil, Mechanical and Manufacturing Innovation [CMMI-1233658]

Ask authors/readers for more resources

Wind tunnel tests show that enzyme-induced carbonate precipitation (EICP) holds promise as a method for mitigation of fugitive dust emissions. Fugitive dust (wind-blown fine-grained soil) is a significant environmental problem in semi-arid and arid environments. Conventional methods for fugitive dust control, including the application of water, salt, or synthetic polymers, are either ineffective in arid climates, limited to short-term stabilisation, or very expensive. EICP employs hydrolysis of urea (ureolysis), a process catalysed by the urease enzyme, to precipitate calcium carbonate (CaCO3) in the presence of calcium ions. Urease is a widely occurring enzyme found in many plants and microorganisms. Wind tunnel experiments were conducted to evaluate the use of a topically applied EICP solution containing plant-derived urease to stabilise soil against fugitive dust emission. Three different soils were tested: a native Arizona silty sand, a uniform medium-grained silica sand and fine sand-sized mine tailings from southern Arizona. The wind tunnel tests established the treatment concentrations at which EICP was more effective in suppressing fugitive dust than specimens prepared by either thoroughly wetting the soil or treatment with a salt-urea solution. These tests demonstrate the potential of EICP treatment as a means of mitigating fugitive dust emissions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available