4.7 Article

Atomic Force Microscopy Measurement in the Lignosulfonate/Inorganic Silica System: From Dispersion Mechanism Study to Product Design

Journal

ENGINEERING
Volume 7, Issue 8, Pages 1140-1148

Publisher

ELSEVIER
DOI: 10.1016/j.eng.2021.07.004

Keywords

Lignin; Silica; Atomic force microscopy; Dispersion mechanism; Product design

Funding

  1. National Natural Science Foundation of China [21606089, 21878113, 21878114]
  2. Guangdong Province Science and Technology Research Project of China [2017B090903003]
  3. Guangzhou Science and Technology Research Project of China [201704030126, 201806010139]

Ask authors/readers for more resources

This study quantitatively investigated the dispersion mechanism of lignosulfonate/silica system using atomic force microscopy (AFM), revealing strong steric repulsion provided by lignosulfonate between SiO2 particles. Further analysis identified adsorbance, normalized interaction constant, and characteristic length as critical factors affecting steric repulsion.
Designing and preparing high-performance lignin-based dispersants are crucial steps in realizing the value-added utilization of lignin on an industrial scale. Such process depends heavily on an understand-ing of the dispersion mechanism of lignin-based dispersants. Here, atomic force microscopy (AFM) is employed to quantitatively investigate the dispersion mechanism of a lignosulfonate/silica (LS/SiO2) sys-tem under different pH conditions. The results show that the repulsive force between SiO2 particles in LS solution is stronger than it is in water, resulting in better dispersion stability. The Derjaguin-Landau- Verwey-Overbeek (DLVO) formula as well as the DLVO formula combined with steric repulsion is utilized for the fitting of the AFM force/distance (F/D) curves between the SiO2 probe and substrate in water and in LS solution. Based on these fitting results, electrostatic and steric repulsive forces are respectively cal-culated, yielding further evidence that LS provides strong steric repulsion between SiO2 particles. Further studies indicate that the adsorbance of LS on SiO2 (Q), the normalized interaction constant (A), and the characteristic length (L) are the three critical factors affecting steric repulsion in the LS/SiO2 system. Based on the above conclusions, a novel quaternized grafted-sulfonation lignin (QAGSL) dispersant is designed and prepared. The QAGSL dispersant exhibits good dispersing performance for SiO2 and real cement particles. This work provides a fundamental and quantitative understanding of the dispersion mechanism in the LS/inorganic particle system and provides important guidance for the development of high-performance lignin-based dispersants. (c) 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available