4.7 Article

Microfluidic Formulation of DNA-Loaded Multicomponent Lipid Nanoparticles for Gene Delivery

Journal

PHARMACEUTICS
Volume 13, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics13081292

Keywords

lipid nanoparticles; microfluidics; transfection efficiency; lipofectamine

Funding

  1. AIRC Foundation (Italy) [19319]
  2. Sapienza University of Rome [RP120172A86CD62E]
  3. Fondazione Umberto Veronesi

Ask authors/readers for more resources

Fine-tuning of formulation and microfluidic parameters plays a vital role in the generation of highly efficient DNA-loaded LNPs. Factors such as PEGylation and post-synthesis sample concentration facilitate the preparation of homogeneous LNPs with high transfection efficiency, while increasing total flow rate has a detrimental effect on the physicochemical properties and transfection properties of LNPs. The effect of particle concentration at the cell surface on transfection efficiency and cell viability varies depending on the cell line, indicating a need for case-by-case optimization.
In recent years, lipid nanoparticles (LNPs) have gained considerable attention in numerous research fields ranging from gene therapy to cancer immunotherapy and DNA vaccination. While some RNA-encapsulating LNP formulations passed clinical trials, DNA-loaded LNPs have been only marginally explored so far. To fulfil this gap, herein we investigated the effect of several factors influencing the microfluidic formulation and transfection behavior of DNA-loaded LNPs such as PEGylation, total flow rate (TFR), concentration and particle density at the cell surface. We show that PEGylation and post-synthesis sample concentration facilitated formulation of homogeneous and small size LNPs with high transfection efficiency and minor, if any, cytotoxicity on human Embryonic Kidney293 (HEK-293), spontaneously immortalized human keratinocytes (HaCaT), immortalized keratinocytes (N/TERT) generated from the transduction of human primary keratinocytes, and epidermoid cervical cancer (CaSki) cell lines. On the other side, increasing TFR had a detrimental effect both on the physicochemical properties and transfection properties of LNPs. Lastly, the effect of particle concentration at the cell surface on the transfection efficiency (TE) and cell viability was largely dependent on the cell line, suggesting that its case-by-case optimization would be necessary. Overall, we demonstrate that fine tuning formulation and microfluidic parameters is a vital step for the generation of highly efficient DNA-loaded LNPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available